ME323 LECTURE 35

Alex Chortos

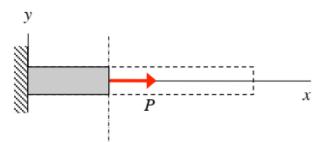
Combined Loading: Objectives

Ch 13: Mohr's Circles

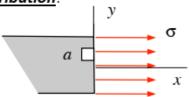
- Given the loading conditions at a point, what are the stress states at different angles?
- At what angle does the max normal stress and max shear stress occur?

Ch 14: Combined Loading

- What are the normal and shear stresses at points on a cross section due to combined axial, torsion, and bending loading?
- Determine the principal stresses and max shear stress at these points – use Mohr's circles.

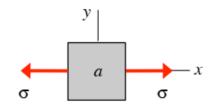

Ch 15: Failure Analysis

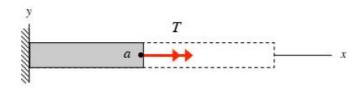
• Given the stress states at a point, under what condition will a 3D structure fail?



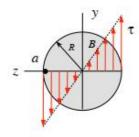
Review of Types of Loading

Internal loading:

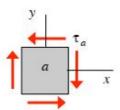

Stress distribution:


sign convention: σ positive OUTWARD on face (tension)

$$\sigma = \frac{P}{A} = constant in y$$
; $A = cross - sectional area$

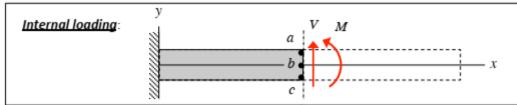

Stress element:

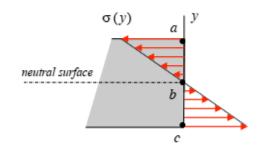
Internal loading:


Stress distribution:

sign convention: T positive OUTWARD on face (by right - hand rule)

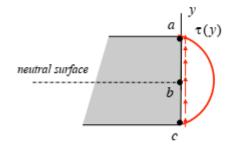
$$au_a = \frac{TR}{I_p} = linear \ in \ radial \ position \ ; \ I_p = polar \ area \ moment$$


Stress element:


Review of Types of Loading

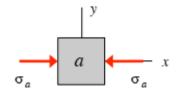
TRANSVERSE LOADING (e.g., rectangular cross section)

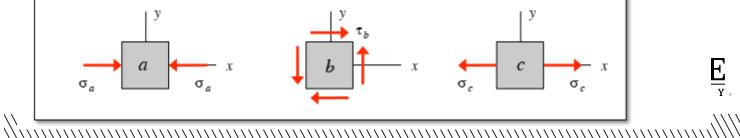
Normal stress distribution:

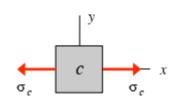


$$|\sigma_a| = \frac{M|y_a|}{I}$$

$$\sigma_b = 0$$

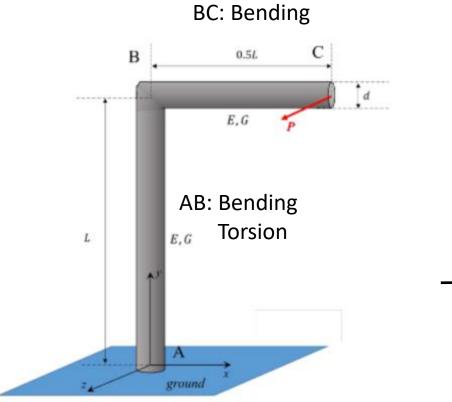

$$\sigma_b = 0$$
 $\left| \sigma_c \right| = \frac{M \left| y_c \right|}{I}$

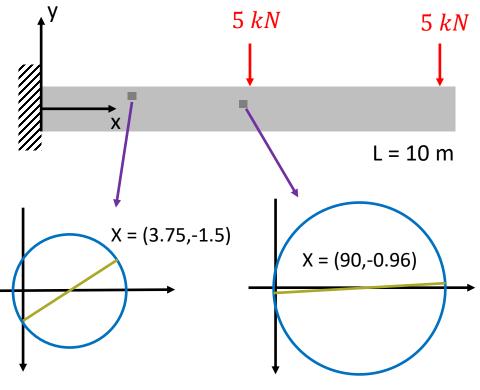

Shear stress distribution:



$$\tau_a = 0$$
 $|\tau_b| = \frac{3|V|}{2A}$ $\tau_c =$

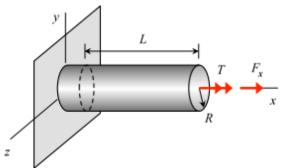
Stress element:

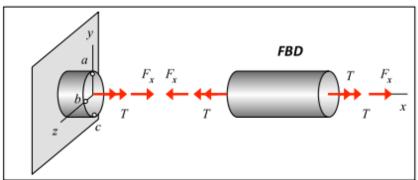


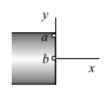


Complex Load States

HW8

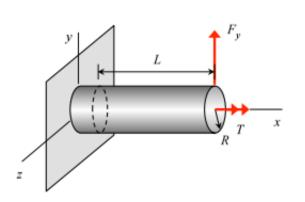

Summary of Loading Conditions

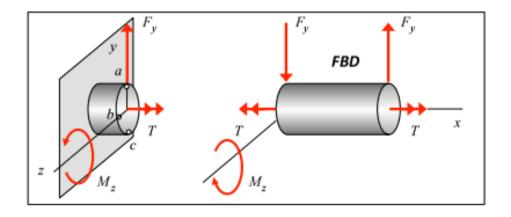

M_y	Load	Type of stress	Stress distribution	Lecture book ch.
	Axial force F_x	Normal	$\sigma_x = F_x / A$	Ch. 6
F_x T_x X	Shear force V_y	Shear	$\tau_{xy} = \frac{V_y Q}{I_{zz}t}$	Ch. 10
M_z	Shear force V_z	Shear	$\tau_{xz} = \frac{V_z Q}{I_{yy} t}$	Ch. 10
Torque (torsion	nal moment) T_x	Shear	$\tau = T \rho / I_p$	Ch. 8
Bend	ing moment M_y	Normal	$\sigma_{x} = M_{y}z / I_{yy}$ $\sigma_{x} = -M_{z}y / I_{zz}$	Ch. 10
Bendi	$\log \operatorname{moment} M_z$	Normal	$\sigma_{x} = -M_{z}y/I_{zz}$	Ch. 10

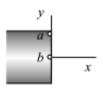

For combined loads, use superposition (possible because of the assumption of linearity).

Axial + Torsion

Example I

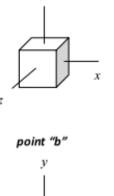






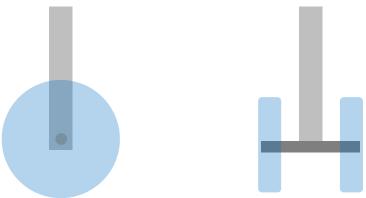
point "a"	stress comp. @ "b"	stress comp. @ "a"	loading
point "b"			
y ,			

Torsion + Bending

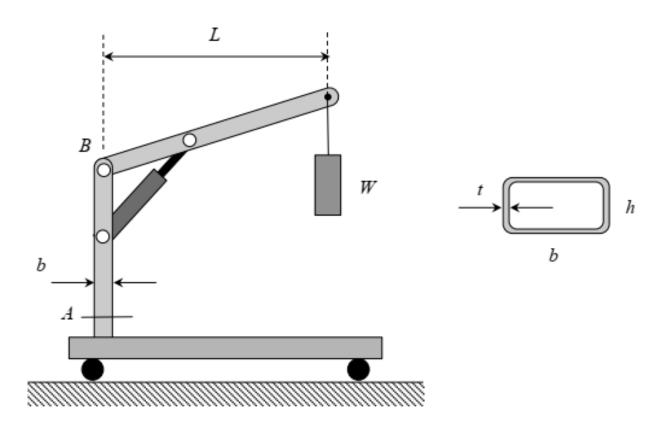


х

point "a"	stress comp. @ "b"	stress comp. @ "a"	loading
point "b" y			



Group Activity (not graded)



What are the loading conditions on each component of the landing gear? What information would you need to determine the stresses?

Example 14.2

A crane is made up of a vertical column AB with a boom pinned to the column at B. The column has a tubular cross section of thickness t, as shown below. The boom supports a block with a weight of W. Determine the maximum tensile stress and maximum compressive stress near the base cross section at A when the boom is in the position shown.

