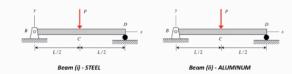

ME 323-Fall 2021 Quizts

Q1 Beam stress 1

2 Points


The distribution of the normal stress o at the cross section of a beam varies linearly with the coordinate y and is constant in its depth (in z-direction). The magnitude of the tensile stress at the top is greater than the magnitude of the compressive stress at the bottom. Let F represent the resultant normal force due to this normal stress on the cross section. Circle the correct answer:

 \odot F > 0 (tensile)

F= STdA >0 Area

Q2 Beam stress 2

Beams (i) and (ii) shown above are identical, except that Beam (i) is made up of steel, and Beam (ii) is made up of aluminum. Note that Esteel > Ealuminum

Q2.1 Part 2.1

2 Points

Let $(|\sigma|_{max})$ and $(|\sigma|_{max})$ represent the maximum magnitude of flexural stress in Beams (i) and (ii), respectively. Circle the correct relationship between these two stresses:

a)
$$(|\sigma|_{max})_i > (|\sigma|_{max})_{ii}$$

b) $(|\sigma|_{max})_i = (|\sigma|_{max})_{ii}$
c) $(|\sigma|_{max})_i < (|\sigma|_{max})_{ii}$

• Answer b)

determinate => M/2) independent of material

=> v=-My also ind. of material

Q2.2 Part 2.2

2 Points

Let $(|\tau|_{max})_i$ and $(|\tau|_{max})_{ii}$ represent the maximum magnitude of the xy-component of shear stress Beams (i) and (ii), respectively. Circle the correct relationship between these two stresses: a) $(|\tau|_{max})_i > (|\tau|_{max})_{ii}$ b) $(|\tau|_{max})_i = (|\tau|_{max})_{ii}$

c) $(|\tau|_{max})_i < (|\tau|_{max})_{ii}$

O Answer a)

O Answer b)

O Answer c)

determinate => V independent of material =) T= VQ It :. md. of material

Q2.3 Part 2.3

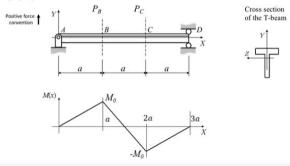
2 Points

Let $(|\delta|_{max})_i$ and $(|\delta|_{max})_{ii}$ represent the maximum magnitude of deflection in Beams (i) and (ii), respectively. Circle the correct relationship between these two deflections:

a) $(|\delta|_{max})_i > (|\delta|_{max})_{ii}$ b) $(|\delta|_{max})_i = (|\delta|_{max})_{ii}$ c) $(\left|\delta\right|_{max}) < (\left|\delta\right|_{max})$

deflection goes as I

O Answer a)


O Answer b)

• Answer c)

Q3 Beam stress 3

4 Points

A T-beam of length 3a is supported at the two ends and loaded by forces P_B and P_C . The line of ac of the forces is indicated (dashed lines) but the direction is to be determined. The correct moment diagram is properly shown below.

Q3.1 Part 3.1

2 Points

Indicate the cross-section on which the maximum TENSILE stress occurs:

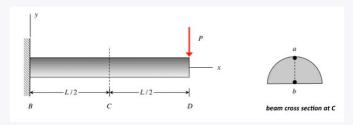
O x = 0

 $\odot x = a$

O = 2i

O x = 3a

O This occurs are more than one location on the beam.


Q3.2 Part 3.2

2 Points

Indicate the cross-section on which the maximum COMPRESSIVE stress occurs:

Q4 Beam stress 4 2 Points

Consider the cantilevered beam above with the concentrated load P at end D. Consider the axial components of stress at points "a" and "b" (σ_a and σ_b , respectively) at location C along the beam. Circle the response below that most accurately describes the relative sizes of the magnitudes of these two stresses:

