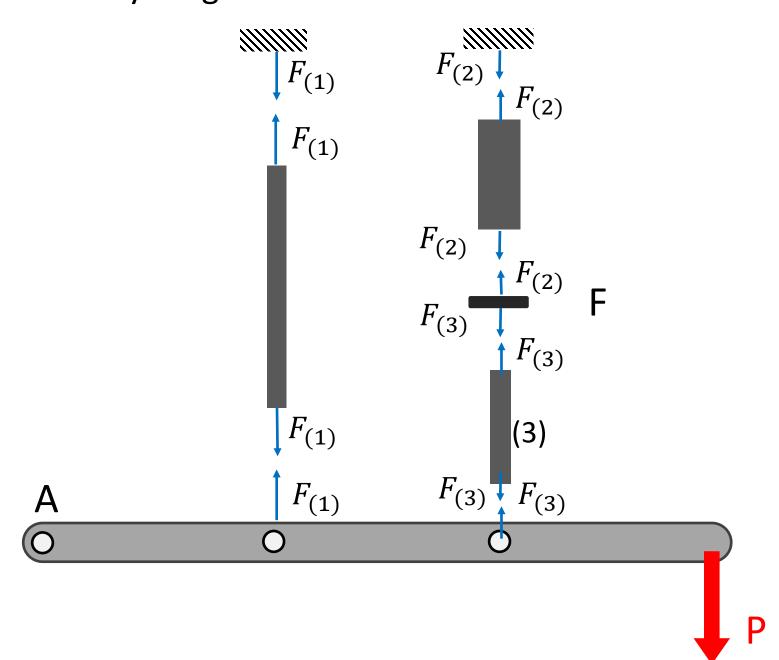
1. Free Body Diagram



2. Force Balances

$$\sum F_y = F_{(2)} - F_{(3)} = 0$$

$$F_{(2)} = F_{(3)} \qquad (1)$$

$$\sum M_A = F_{(1)}L + F_{(3)}(2L) - P(3L) = 0$$
 (5)

2 equations; 3 unknowns → indeterminate

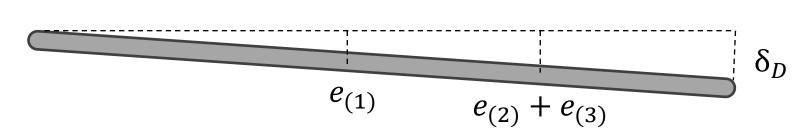
3. Force-Elongation

(1)
$$e_{(1)} = \frac{F_{(1)}L_{(1)}}{EA_{(1)}} = \frac{F_{(1)}(2L)}{E\pi\left(\frac{d}{2}\right)^2} = \frac{8F_{(1)}}{E\pi d^2}$$

(1)
$$e_{(2)} = \frac{F_{(2)}L_{(2)}}{EA_{(2)}} = \frac{F_{(3)}(L)}{E\pi\left(\frac{2d}{2}\right)^2} = \frac{F_{(3)}}{E\pi d^2}$$

(1)
$$e_{(3)} = \frac{F_{(3)}L_{(3)}}{EA_{(3)}} = \frac{F_{(3)}(L)}{E\pi\left(\frac{d}{2}\right)^2} = \frac{4F_{(3)}}{E\pi d^2}$$

4. Compatibility



Similar triangles

$$\frac{e_{(1)}}{L} = \frac{e_{(2)} + e_{(3)}}{2L}$$
 (5

5. Solve

$$2e_{(1)} = e_{(2)} + e_{(3)}$$

$$2\frac{8F_{(1)}}{E\pi d^2} = \frac{F_{(3)}}{E\pi d^2} + \frac{4F_{(3)}}{E\pi d^2}$$

$$16F_{(1)} = 5F_{(3)}$$

$$F_{(1)} = \left(\frac{5}{16}\right) F_{(3)}$$

$$F_{(1)}L + F_{(3)}(2L) - P(3L) = 0$$

$$\left(\frac{5}{16}\right)F_{(3)} + \left(\frac{32}{16}\right)F_{(3)} = 3P$$

$$F_{(3)} = \left(\frac{3*16}{37}\right)P = \left(\frac{48}{37}\right)2000 = 2595 \, N$$

(2)

a. Stresses

$$\sigma_{(2)} = \frac{F_{(2)}}{A_{(2)}} = \frac{2595 \, N}{\pi \left(\frac{2d}{2}\right)^2} = 2.06 \, MPa$$

$$\sigma_{(3)} = \frac{F_{(3)}}{A_{(3)}} = \frac{2595 \, N}{\pi \left(\frac{d}{2}\right)^2} = 8.26 \, MPa$$
(2)

b. Displacement at D

$$\sigma_{(2)} = \frac{F_{(2)}}{A_{(2)}} = \frac{2595 \, N}{\pi \left(\frac{2d}{2}\right)^2} = 2.06 \, MPa$$

$$\sigma_{(3)} = \frac{F_{(3)}}{A_{(3)}} = \frac{2595 \, N}{\pi \left(\frac{d}{2}\right)^2} = 8.26 \, MPa$$

$$\delta_{(D)} = 3e_{(1)}$$

$$F_{(1)} = \left(\frac{5}{16}\right) F_{(3)} = 811 \, N$$

$$3e_{(1)} = 3\frac{8F_{(1)}}{E\pi d^2} = \frac{24(811)}{E\pi d^2} = -1.55 \, mm$$

- Assume all newbers under positive targue

- Eguilibrium ST=0=T++72-TA => Shotically to

$$\phi_1 = \frac{T_1 L}{G_1 I_0}$$
 $\phi_2 = \frac{T_2 L/2}{G_2 J_{p2}}$

$$T_{P_1} = \frac{\pi (d/2)^4}{2} = \frac{\pi d^4}{32}$$

$$T_{P_2} = \frac{\pi (3d/2)^4 - (2d/2)^4}{32} = \frac{65\pi d^4}{32}$$

- Compatibility conditions

$$\phi_{i} = \phi_{A} - \phi_{C}$$

$$\phi_1 = \phi_A - \phi_C$$
; $\phi_Z = \phi_A - \phi_B$; $\phi_C = \phi_B = 0$

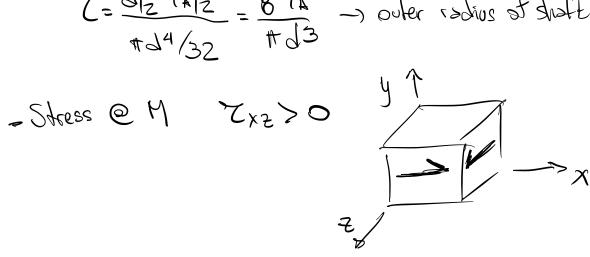
$$\phi_c = \phi_B = 0$$

$$\frac{T_1L}{G_1} \times 32 = \frac{T_2L}{G_2 \times J^4} \times \frac{16}{65} \Rightarrow \frac{T_1}{G_1} = \frac{T_2}{G_2} \times \frac{1}{130}$$

$$\frac{T_1}{G_1} = \frac{T_2}{G_2} \times \frac{1}{130}$$

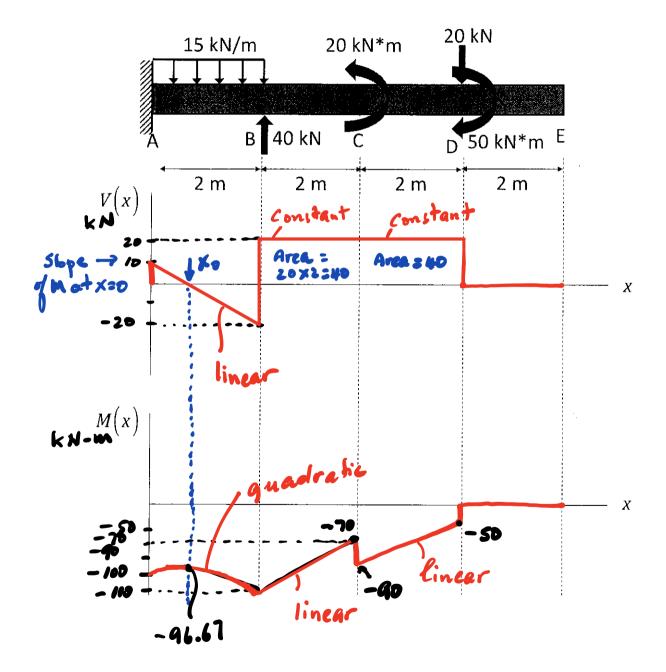
$$\Rightarrow 2T_z=T_A \Rightarrow T_z=T_A/2 \Rightarrow T_1=T_A/2$$

- Stress in shaft (I) and (2).



Name (Print) Solution (First)

PROBLEM #3 (cont.)



For
$$4 < x < 6$$

$$V(4) = 20 kN$$

$$V(6)^{-} = 20 kN$$

$$V(6)^{+} = 20 - 20 = 0$$

$$M(6)^{-} = -40 + 40 = -50 kN - m$$

$$M(6)^{+} = -50 + 50 = 0$$

$$M_{0} < 0$$

Problem No. 4

Part 4A

Consider the truss shown that is made up of identical elements (1) and (2), with each element have a Young's modulus of E, a length L and cross-sectional area of A. A horizontal load P acting to the right of joint C, element (2) is vertical and $\phi < 45^{\circ}$.

Let e_1 and e_2 represent the elongations of elements (1) and (2), respectively, and F_1 and F_2 be the corresponding loads (forces) carried by the elements.

Circle the correct responses below:

2 points:

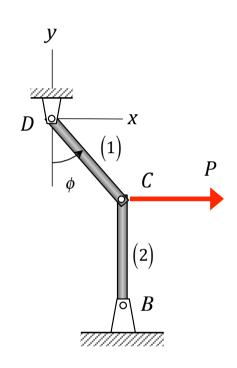
- a) $|F_1| < P$
- b) $|F_1| = P$
- $(c) |F_1| > P$

2 points:

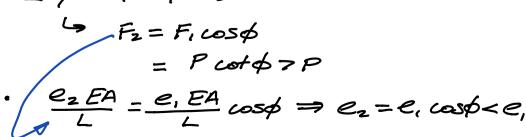
- a) $|F_2| < P$
- b) $|F_2| = P$
- (c) $|F_2| > P$

2 points:

- (a) $|e_2| < |e_1|$
- b) $|e_2| = |e_1|$
- c) $|e_2| > |e_1|$

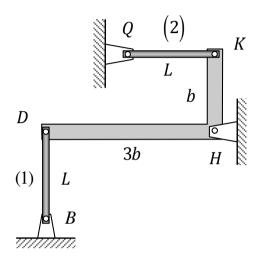


- $\Sigma F_{i} = P F_{i} \leq n\phi = 0$ $F_{i} = \frac{P}{\leq n\phi} > P$
- · ZFy= F, cosp-F2=0



Part 4B

The rigid, L-shaped bar DHK is pinned to ground at H, and identical elastic links (1) and (2) are connected between D and B, and between Q and K, respectively. Links (1) and (2) are vertical and horizontal, respectively. The temperature of link (2) is raised by an amount of ΔT , whereas the temperature of link (1) is held constant. Let ε_1 and ε_2 be the axial strains in (1) and (2), respectively, and σ_1 and σ_2 be the axial stresses in (1) and (2), respectively.



Circle the correct responses below:

2 points:

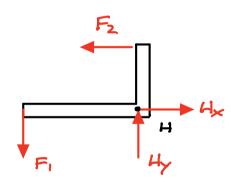
- a) $|\sigma_1| > |\sigma_2|$
- b) $|\sigma_1| = |\sigma_2|$
- (c) $|\sigma_1| < |\sigma_2|$

2 points:

- (a) σ_1 and $arepsilon_1$ have the same signs
- b) σ_1 and ε_1 are both zero
- c) σ_1 and $arepsilon_1$ have different signs

2 points:

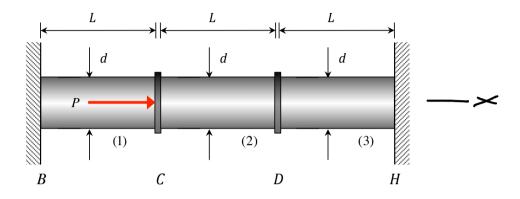
- a) σ_2 and ε_2 have the same signs
- b) σ_2 and ε_2 are both zero
- σ_2 and ε_2 have different signs



- $\sum M_H = F_2(b) + F_1(3b) = 0$ $4 |F_2| = 3|F_1| \Rightarrow |\sigma_2| = 3|\sigma_1|$
- ε' = <u>Ε</u>
- $E_2 = \frac{\nabla^2}{E} + \Delta \Delta T$ As (2) 75 heated, $E_2 > 0$. With $E_2 > 0$, (2) becomes compressed $\Rightarrow \nabla_2 < 0$

Part 4C

A rod is made up of solid, circular cross-sectioned elements (1), (2) and (3), with (1) and (2) joined with a rigid connector C, and (2) and (3) joined by rigid connector D. All three elements are made of the same type of steel, having a Young's modulus of E_{steel} . A load P acts in the axial direction on connector C. Let F_1 , F_2 and F_3 be the axial load (force) carried by, and σ_1 , σ_2 and σ_3 be the axial stresses in elements (1), (2) and (3), respectively.



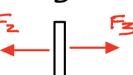
Circle the correct responses below:

2 points:

a)
$$|F_2| > |F_3|$$

$$|F_2| = |F_3|$$

c)
$$|F_2| < |F_3|$$



$$\sum F_{x} = -F_{2} + F_{3} = 0$$

$$F_{2} = F_{3}$$

2 points:

a)
$$\left|F_1\right| > \left|F_2\right|$$

b)
$$|F_1| = |F_2|$$

c)
$$\left|F_1\right| < \left|F_2\right|$$

F1 = - F2 - F3 = - 2 FZ

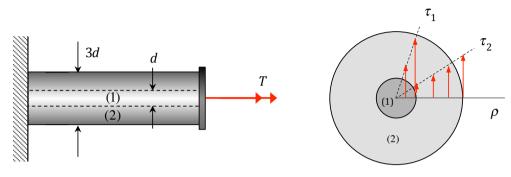
2 points: Suppose the material of element (3) is changed to aluminum having a Young's modulus $E_{\it aluminum}$, where $E_{\it steel} > E_{\it aluminum}$. With this change in material:

- a) σ_1 is increased
 - b) $|\sigma_1|$ is unchanged
 - c) $|\sigma_1|$ is decreased

As E3 is decreased, (3) becomes less stiff => |F, | increases => J, increases

Part 4D

A composite shaft is made up a tubular shell (1) and a core (2), where the shear moduli of (1) and (2) are G_1 and G_2 , respectively. Let τ_1 and τ_2 represent the shear stress on the shaft cross-section for (1) and (2), respectively.



enlarged view of cross-section

Circle the correct responses below:

2 points: For the shear stress distribution on the shaft cross-section shown above:

- a) $G_1 > G_2$ b) $G_1 = G_2$

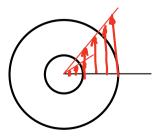
 - c) $G_1 < G_2$

Since slope of T, w. p is greater than slope of Tz us. p, G, 7 Gz

2 points: For a different set of materials for the shell and core, it is known that $G_2 = 3G_1$. At what location ρ (the radial distance from the shaft center) does the maximum magnitude of shear stress $|\tau|_{\rm max}$ in the shaft cross-section occur?

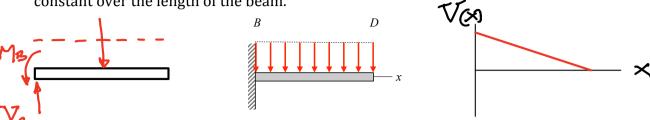
- a) $\rho < d/2$
- b) $\rho = d/2$
- c) $d/2 < \rho < 3d/2$ d) $\rho = 3d/2$

with G27G, the max.
magnitude stear stress occus
on outer surface

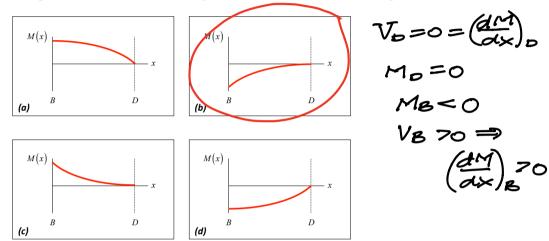


Part 4E - 2 points

Consider the cantilevered beam that is experiencing a line load (force/length) that is constant over the length of the beam.

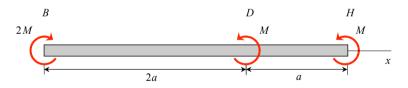


Circle the correct shape below for the bending moment distribution along the beam:



Part 4F – 1 point

Consider the beam below that is acted upon by three bending couples.



Circle the correct shape below for the bending moment distribution along the beam:

