Lecture 5 summary: general state of stress

- STRESS COMPONENTS: There are only six unique components of stress: $\sigma_{x}, \sigma_{x}, \sigma_{x}, \tau_{x y}, \tau_{x z}, \tau_{y z}$
(see lecture book for sign conventions)
- STRESS/STRAIN RELATIONS (Hooke's law for linear
 behavior):

$$
\begin{aligned}
& \varepsilon_{x}=\frac{1}{E}\left[\sigma_{x}-v\left(\sigma_{y}+\sigma_{z}\right)\right]+\alpha \Delta T \\
& \varepsilon_{y}=\frac{1}{E}\left[\sigma_{y}-v\left(\sigma_{x}+\sigma_{z}\right)\right]+\alpha \Delta T \\
& \varepsilon_{z}=\frac{1}{E}\left[\sigma_{z}-v\left(\sigma_{x}+\sigma_{y}\right)\right]+\alpha \Delta T \\
& \gamma_{x y}=\tau_{x y} / G ; \quad \gamma_{x z}=\tau_{x z} / G ; \quad \gamma_{y z}=\tau_{y z} / G
\end{aligned}
$$

where $E=$ Young's modulus, $G=$ shear modulus, $v=$ Poisson's ratio and $\alpha=$ thermal expansion coefficient.

- NOTE! For general loadings, remember that: $\sigma \neq E \varepsilon$. Also, it is possible to have non-zero strains with zero stress. And, vice versa.

