Problem 11.1 (10 points)

For the state of plane stress shown in the figure:

1. Draw the Mohr's circle and indicate the points that represent stresses on face X and on face Y.
2. Using the Mohr's circle, determine the normal and shear stress on the inclined plane shown in the figure and label this point as N on the Mohr's circle.

Solution:

The give state of plane stress has the following stresses:

$$
\begin{aligned}
\sigma_{x} & =60 M P a \\
\sigma_{y} & =30 M P a \\
\tau_{x y} & =-10 M P a
\end{aligned}
$$

To find the center of the Mohr's circle we find $\sigma_{\text {avg }}$,

$$
\sigma_{a v g}=\frac{\sigma_{x}+\sigma_{y}}{2}=45 M P a
$$

Mohr's circle:

The rotation of the inclined plane is $=40^{\circ}$ (C. C. W), the point ' N ' on the Mohr's circle will be at an angle of 80° (C. C.W) from point ' X '.

Coordinates of point N and the normal and shear stresses on the inclined plane are as follows:

$$
\begin{aligned}
& \text { Shear Stress: } \tau_{n t}=-16.5 \mathrm{MPa} \\
& \text { Normal Stress: } \sigma_{\mathrm{n}}=37.75 \mathrm{MPa}
\end{aligned}
$$

Note: The rotation considered here is $+40^{\circ}$, however a rotation of -50° is also valid (in this case the ' n ' and ' t ' axis would be swapped.

Problem 11.2 (10 points)

For the loading conditions shown in cases (a) - (b):

1. Determine the state of stress at points A and B
2. Represent the state of stress at points A and B in three-dimensional differential stress elements.

Using the Mohr's circle, determine:
3. The principal stresses and principal angles for the states of stress at A and B.

Note: Identify first which is the plane corresponding to the state of plane stress (namely, $x y$-plane, $x z$-plane or $y z$-plane) for each point and loading condition.
4. The maximum in-plane shear stresses at points A and B.
5. The absolute maximum shear stress at points A and B.

Case (a):

Solution: Case (a)

Making a cut at point H :

Internal resultant forces include only the torque.

POINT A

Stress distribution at point A:

$$
\begin{gathered}
\tau_{A}=\frac{T R}{I_{P}}=\text { linear in radial position } \\
\mathrm{I}_{\mathrm{p}}=\text { polar moment of area } \\
\tau_{A}=\frac{100 \mathrm{Nm} \times 12.5 \mathrm{~mm}}{\frac{\pi}{32} \times 25^{4} \mathrm{~mm}^{4}}=0.03259 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
\end{gathered}
$$

There are no normal stresses acting on the point $\mathrm{A}, \sigma_{x}=0, \sigma_{y}=0$ and the only shear stress acting is in the xy plane, $\tau_{x y}=32.59 \mathrm{kPa}$

Three-dimensional differential stress element at A:

Since, $\sigma_{z}=0, \tau_{y z}=\tau_{x z}=0$, the xy plane is the plane corresponding to the state of plane stress.

Mohr's Circle:

Principal stress: $\sigma_{p_{1}}=32.59 \mathrm{kPa}, \sigma_{p_{2}}=-32.59 \mathrm{kPa}$
Principal angle: $=\theta_{p_{1}}=-45^{\circ}, \theta_{p_{2}}=45^{\circ}$
Maximum in plane shear stresses: $\tau_{\text {inplane, } \max }=32.59 \mathrm{kPa}$
Absolute shear stress: $\tau_{\text {max }, a b s}=32.59 \mathrm{kPa}$
POINT B
Stress distribution at point B:

$$
\begin{gathered}
\tau_{B}=\frac{T R}{I_{P}}=\text { linear in radial position } \\
I_{p}=\text { polar moment of area } \\
\tau_{B}=\frac{100 \mathrm{Nm} \times 12.5 \mathrm{~mm}}{\frac{\pi}{32} \times 25^{4} \mathrm{~mm}^{4}}=0.03259 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
\end{gathered}
$$

There are no normal stresses acting on the point $\mathrm{B}, \sigma_{x}=0, \sigma_{y}=0$ and the only shear stress acting is in the xy plane, $\tau_{x y}=32.59 \mathrm{kPa}$

Three-dimensional differential stress element at B:

Since, $\sigma_{z}=0, \tau_{y x}=\tau_{x z}=0$, the $y z$ plane is the plane corresponding to the state of plane stress.

Mohr's Circle:

Principal stress: $\sigma_{p_{1}}=32.59 \mathrm{kPa}, \sigma_{p_{2}}=-32.59 \mathrm{kPa}$
Principal angle: $=\theta_{p_{1}}=+45^{\circ}, \theta_{p_{2}}=-45^{\circ}$
Maximum in plane shear stresses: $\tau_{\text {inplane, } \max }=32.59 \mathrm{kPa}$
Absolute shear stress: $\tau_{\text {max,abs }}=32.59 \mathrm{kPa}$

Case (b):

Internal pressure $=3 \mathrm{MPa}$
Wall thickness $(\boldsymbol{t})=15 \mathrm{~mm}$

Thin walled pressure vessel
Notice that there is no point B for this loading condition

The element A will only experience hoop and axial stresses

$$
\text { Pressure }=\mathrm{P}=3 \times 10^{6} \mathrm{~Pa}, \text { thickness }=\mathrm{t}=15 \times 10^{-3} \mathrm{~m}, \text { radius }=\mathrm{r}=1.25 \mathrm{~m}
$$

Axial stress $=\sigma_{\mathrm{a}}=\frac{\mathrm{pr}}{2 \mathrm{t}}=\frac{3 \times 10^{6} \times \frac{1.25}{2}}{2 \times 15 \times 10^{-3}}=62.5 \mathrm{MPa}=62.5 \times 10^{6} \mathrm{~Pa}$
Hoop stress $=\sigma_{\mathrm{h}}=\frac{\mathrm{pr}}{\mathrm{t}}=\frac{3 \times 10^{6} \times \frac{1.25}{2}}{15 \times 10^{-3}}=125 \mathrm{MPa}=125 \times 10^{6} \mathrm{~Pa}$

Three-dimensional differential stress element at A:

125 MPa

Since, $\sigma_{z}=0, \tau_{y z}=\tau_{x z}=0$, the xy plane is the plane corresponding to the state of plane stress.

125 MPa

Mohr's Circle:

$$
\sigma_{a v g}=\frac{125+62.5}{2}=93.75 \mathrm{MPa}
$$

Principal stress: $\sigma_{p_{1}}=125 \mathrm{MPa}, \sigma_{p_{2}}=62.5 \mathrm{MPa}, \sigma_{3}=0 \mathrm{MPa}$
Principal angle: $=\theta_{p_{1}}=90^{\circ}, \theta_{p_{2}}=0^{\circ}$
Maximum in plane shear stresses: $\tau_{\text {inplane, } \max }=31.25 \mathrm{MPa}$
Absolute shear stress: $\tau_{\text {max, } a b s}=62.5 \mathrm{MPa}$

Problem 11.3 (10 points)

For the loading conditions shown in cases (c) - (d):

1. Determine the state of stress at points A and B
2. Represent the state of stress at points A and B in three-dimensional differential stress elements.

Using the Mohr's circle, determine:
3. The principal stresses and principal angles for the states of stress at A and B.

Note: identify first which is the plane corresponding to the state of plane stress (namely, $x y$ plane, xz-plane or yz-plane) for each point and loading condition.
4. The maximum in-plane shear stresses at points A and B.
5. The absolute maximum shear stress at points A and B.

Case (c):

FBD:

$$
\begin{gathered}
\mathrm{O}_{\mathrm{x}}=-\mathrm{P}_{\mathrm{x}}=-100 \mathrm{~N} \\
\mathrm{O}_{\mathrm{x}}=-\mathrm{P}_{\mathrm{x}}=-100 \mathrm{~N} \\
\mathrm{M}=\mathrm{P}_{\mathrm{y}} \times 200 \mathrm{~mm}=20 \times 10^{3} \mathrm{Nmm}
\end{gathered}
$$

Making a cut at point H :

$$
\begin{gathered}
\mathrm{V}_{\mathrm{H}}=\mathrm{P}_{\mathrm{y}}=100 \mathrm{~N} \\
\mathrm{H}_{\mathrm{x}}=\mathrm{P}_{\mathrm{x}}=100 \mathrm{~N} \\
\mathrm{M}_{\mathrm{H}}=100 \mathrm{~N} \times 100 \mathrm{~mm}=10^{4} \mathrm{~N} . \mathrm{mm}
\end{gathered}
$$

POINT A

Normal Stress Distribution due to axial loading:

$$
\begin{gathered}
\mathrm{P}_{\mathrm{x}}=100 \mathrm{~N} \\
\sigma_{\mathrm{x}}=\frac{100 \mathrm{~N}}{25^{2} \mathrm{~mm}^{2}}=0.16 \mathrm{~N} / \mathrm{mm}^{2}=0.16 \mathrm{MPa}
\end{gathered}
$$

Normal Stress Distribution due to bending:

$$
\sigma_{\mathrm{x}}=\frac{\mathrm{M}_{\mathrm{H}} \mathrm{y}}{\mathrm{I}}=0 \mathrm{MPa}
$$

Shear Stress Distribution due to transverse loading:

$\tau_{\mathrm{xy}}=\frac{3 \mathrm{~V}}{2 \mathrm{~A}}=\frac{3 \times 100 \mathrm{~N}}{2 \times 625 \mathrm{~mm}^{2}}=0.24 \mathrm{MPa}$

Three-dimensional differential stress element at A:

Since, $\sigma_{\mathrm{z}}=0, \tau_{\mathrm{yz}}=\tau_{\mathrm{xz}}=0$, the xy plane is the plane corresponding to the state of plane stress.

Mohr's circle:

$$
\sigma_{\text {avg }}=\frac{0.16}{2}=0.08 \mathrm{MPa}
$$

Principal stress: $\sigma_{p_{1}}=0.33 \mathrm{MPa}, \sigma_{p_{2}}=-0.17 \mathrm{MPa}, \sigma_{3}=0 \mathrm{MPa}$
Principal angle: $=\theta_{p_{1}}=35.78^{\circ}, \theta_{p_{2}}=125.78^{\circ}$
Maximum in plane shear stresses: $\tau_{\text {inplane, } \max }=0.253 \mathrm{MPa}$
Absolute shear stress: $\tau_{\max , a b s}=0.253 \mathrm{MPa}$

POINT B

Normal Stress Distribution due to axial loading:

$$
\begin{gathered}
\mathrm{P}_{\mathrm{x}}=100 \mathrm{~N} \\
\sigma_{\mathrm{x}}=\frac{100 \mathrm{~N}}{25^{2} \mathrm{~mm}^{2}}=0.16 \mathrm{~N} / \mathrm{mm}^{2}=0.16 \mathrm{MPa}
\end{gathered}
$$

Normal Stress Distribution due to bending:

Shear Stress Distribution due to transverse loading:

$$
\tau_{\mathrm{xy}}=\frac{3 \mathrm{~V}}{2 \mathrm{~A}}=0 \mathrm{MPa}
$$

Three-dimensional differential stress element at B:

$$
\sigma_{x}=3.84 \mathrm{MPa}-0.16 \mathrm{MPa}=3.68 \mathrm{MPa}
$$

Since, $\sigma_{\mathrm{z}}=0, \tau_{\mathrm{yz}}=\tau_{\mathrm{xz}}=0$, the xy plane is the plane corresponding to the state of plane stress.

Mohr's circle:

$$
\sigma_{a v g}=\frac{-3.68}{2}=-1.84 \mathrm{MPa}
$$

Principal stress: $\sigma_{p_{1}}=0 \mathrm{MPa}, \sigma_{p_{2}}=-3.68 \mathrm{MPa}, \sigma_{3}=0 \mathrm{MPa}$
Principal angle: $=\theta_{p_{1}}=90^{\circ}, \theta_{p_{2}}=0^{\circ}$
Maximum in plane shear stresses: $\tau_{\text {inplane, } \max }=1.84 \mathrm{MPa}$
Absolute shear stress: $\tau_{\text {max, abs }}=1.84 \mathrm{MPa}$

Case (d):

FBD:

$$
\begin{gathered}
\mathrm{M}_{\mathrm{o}}=100 \mathrm{~N} \times 200 \mathrm{~mm}=20 \times 10^{3} \mathrm{~N} . \mathrm{mm} \\
\mathrm{~T}_{\mathrm{o}}=200 \mathrm{~N} . \mathrm{mm}
\end{gathered}
$$

Making a cut at H and finding the internal resultant force, moment and torque we have:

$$
\begin{gathered}
\mathrm{V}_{\mathrm{H}}=-100 \mathrm{~N} \\
\mathrm{M}_{\mathrm{H}}=10^{4} \mathrm{~N} . \mathrm{mm} \\
\mathrm{~T}_{\mathrm{H}}=200 \mathrm{~N} . \mathrm{mm}
\end{gathered}
$$

POINT A

Normal Stress Distribution due to bending at A:

$$
\sigma_{\mathrm{x}}=\frac{\mathrm{M}_{\mathrm{H}} \mathrm{y}}{\mathrm{I}}=0 \mathrm{MPa}
$$

Shear Stress Distribution due to transverse loading at A:

$$
\tau_{\mathrm{xy}}=\frac{4 \mathrm{~V}}{3 \mathrm{~A}}=\frac{4 \times 100 \mathrm{~N}}{3 \times \frac{\pi}{4} \mathrm{x}(30 \mathrm{~mm})^{2}}=0.188 \mathrm{MPa}
$$

Shear stress distribution due to torsional loading at A:

$$
\begin{gathered}
\tau_{\mathrm{xy}}=\frac{\mathrm{T}_{\mathrm{H}} \mathrm{R}}{\mathrm{I}_{\mathrm{P}}}=\text { linear in radial position } \\
\mathrm{I}_{\mathrm{p}}=\text { polar moment of area } \\
\tau_{\mathrm{xy}}=0 \mathrm{MPa}
\end{gathered}
$$

Three-dimensional differential stress element at A:

$$
\tau_{\mathrm{xy}}=0.18862 \mathrm{MPa}=188.62 \mathrm{kPa}
$$

Since, $\sigma_{\mathrm{z}}=0, \tau_{\mathrm{yz}}=\tau_{\mathrm{xz}}=0$, the xy plane is the plane corresponding to the state of plane stress.

Mohr's circle:

$$
\sigma_{a v g}=0 \mathrm{MPa}
$$

Principal stress: $\sigma_{p_{1}}=0.188 \mathrm{MPa}, \sigma_{p_{2}}=-0.188 \mathrm{MPa}, \sigma_{3}=0 \mathrm{MPa}$
Principal angle: $=\theta_{p_{1}}=45^{\circ}, \theta_{p_{2}}=135^{\circ}$
Maximum in plane shear stresses: $\tau_{\text {inplane, } \max }=0.188 \mathrm{MPa}$
Absolute shear stress: $\tau_{\text {max }, a b s}=0.188 \mathrm{MPa}$

POINT B

Normal Stress Distribution due to bending at B:

$$
\begin{gathered}
\sigma_{x}=\frac{M_{H} y}{I}=\frac{10^{4} \mathrm{~N} \cdot \mathrm{~mm} \times 15 \mathrm{~mm}}{\frac{\pi}{4} \times 15^{4} \mathrm{~mm}^{4}} \\
\sigma_{\mathrm{x}}=3.77 \mathrm{MPa} \text { (compressive) }
\end{gathered}
$$

Shear Stress Distribution due to transverse loading at B:

$$
\tau_{\mathrm{xy}}=0 \mathrm{MPa}
$$

Stress distribution due to torsional loading at point B:

$$
\begin{gathered}
\tau_{B}=\frac{T_{H} R}{I_{P}}=\text { linear in radial position } \\
I_{p}=\text { polar moment of area } \\
\tau_{B}=\frac{200 . \mathrm{Nmm} \times 15 \mathrm{~mm}}{\frac{\pi}{32} \times 30^{4} \mathrm{~mm}^{4}} \\
\tau_{B}=0.0377 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}=0.0377 \mathrm{MPa}
\end{gathered}
$$

Three-dimensional differential stress element at A:

$$
\begin{gathered}
\sigma_{\mathrm{x}}=3.77 \mathrm{MPa} \\
\tau_{\mathrm{xz}}=0.0377 \mathrm{MPa}=37.7 \mathrm{kPa}
\end{gathered}
$$

Since, $\sigma_{\mathrm{y}}=0, \tau_{\mathrm{yz}}=\tau_{\mathrm{xy}}=0$, the xz plane is the plane corresponding to the state of plane stress.

Principal stress: $\sigma_{p_{1}}=0.0037 \mathrm{MPa}, \sigma_{p_{2}}=-3.77 \mathrm{MPa}, \sigma_{3}=0 \mathrm{MPa}$
Principal angle: $=\theta_{p_{1}}=90.57^{\circ}, \theta_{p_{2}}=0.57^{\circ}$
Maximum in plane shear stresses: $\tau_{\text {inplane, } \max }=1.8854 \mathrm{MPa}$
Absolute shear stress: $\tau_{\text {max,abs }}=1.8854 \mathrm{MPa}$

Problem 11.4 (10 points)

Consider the elastic structure shown in the figure, where a force equal to $500 \mathrm{Ni}-750 \mathrm{~N} \boldsymbol{j}$ is applied at the end of the segment CH parallel to the z -axis.

1. Determine the internal resultants at cross section B (i.e., axial force, two shear forces, torque, and two bending moments).

Side view

Front view
Top view

2. Show the stress distribution due to each internal resultant on the appropriate view of the cross B (i.e., side view, front view or top view).
3. Determine the state of stress on points a and b on cross section B.
4. Represent the state of stress at points a and b in three-dimensional differential stress elements.
5. Determine the principal stresses and the absolute maximum shear stress at point b.

FBD:

$$
\mathbf{M}_{\mathrm{B}}=\mathrm{M}_{\mathrm{x}} \boldsymbol{i}+\mathrm{M}_{\mathrm{y}} \boldsymbol{j}+\mathrm{M}_{\mathrm{z}} \boldsymbol{z}
$$

Using force balance we get:

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{x}}=500 \mathrm{~N} \\
& \mathrm{~B}_{\mathrm{y}}=750 \mathrm{~N}
\end{aligned}
$$

$$
\mathrm{B}_{\mathrm{z}}=0 \mathrm{~N}
$$

Moment balance about point B:

Coordinates of point H w.r.t point $\mathrm{B}=\boldsymbol{r}_{H / B}=120 \mathrm{~mm} \boldsymbol{i}+0 \mathrm{~mm} \boldsymbol{j}+150 \mathrm{~mm} \mathrm{z}$
Force $=\mathbf{F}=500 \mathrm{~N} \boldsymbol{i}-750 \mathrm{~N} \boldsymbol{j}+0 \mathrm{~mm} \boldsymbol{z}$

$$
\begin{gathered}
\mathbf{M}_{\mathbf{B}}+\boldsymbol{r}_{H / B} \times \mathbf{F}=0 \\
\left(\mathrm{M}_{\mathrm{x}} \boldsymbol{i}+\mathrm{M}_{\mathrm{y}} \boldsymbol{j}+\mathrm{M}_{\mathrm{z}} \mathbf{z}\right)+\boldsymbol{r}_{\boldsymbol{H} / \boldsymbol{B}} \times \mathbf{F}=0 \\
\mathrm{M}_{\mathrm{x}}=-112500 \mathrm{~N} . \mathrm{mm}=-112.5 \mathrm{~N} . \mathrm{m} \\
\mathrm{M}_{\mathrm{y}}=-75000 \mathrm{~N} . \mathrm{mm}=-75 \mathrm{~N} . \mathrm{m} \\
\mathrm{M}_{\mathrm{z}}=-90000 \mathrm{~N} . \mathrm{mm}=-75 \mathrm{~N} . \mathrm{m}
\end{gathered}
$$

The reactions are as follows
Torque $=\mathrm{M}_{\mathrm{x}}=-112.5 \mathrm{~N} . \mathrm{m}$
Axial force $=B_{x}=500 \mathrm{~N}$
Shear force $1=B_{y}=750 \mathrm{~N}$
Shear force $2=B_{z}=0$
Bending moment 1 (about y axis) $=\mathrm{M}_{\mathrm{y}}=-75$ N.m
Bending moment 2 (about z axis) $=\mathrm{M}_{\mathrm{z}}=90$ N.m

POINT ' a '

Stress distribution due to torsional loading $\left(M_{x}\right)$ at point ' a ' :

$$
\tau_{\mathrm{xy} 1}=\frac{\mathrm{T}_{\mathrm{H}} \mathrm{R}}{\mathrm{I}_{\mathrm{P}}}=\text { linear in radial position }
$$

$\mathrm{I}_{\mathrm{p}}=$ polar moment of area

$$
\begin{aligned}
& \tau_{\mathrm{xy} 1}=\frac{112.5 \mathrm{~N} . \mathrm{m} \times 0.015 \mathrm{~m}}{\frac{\pi}{2} \times(0.015)^{4} \mathrm{~mm}^{4}} \\
& \tau_{\mathrm{xy} 1}=21.22 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}=21.22 \mathrm{~Pa}
\end{aligned}
$$

Stress distribution due to axial loading (B_{x}) at point ' a ':

Stress distribution due to Shear force $1\left(B_{y}\right)$ loading at point ' a ':

$$
\begin{gathered}
\tau_{\mathrm{xy} 2}=\frac{4 \mathrm{~V}}{3 \mathrm{~A}}=\frac{\mathrm{B}_{\mathrm{y}}}{3 \frac{\pi}{4}(\mathrm{R})^{2}} \\
\tau_{\mathrm{xy} 2}=\frac{4 \mathrm{~V}}{3 \mathrm{~A}}=\frac{750 \mathrm{~N}}{3 \frac{\pi}{4}(0.015 \mathrm{~m})^{2}}=1.414 \mathrm{MPa}
\end{gathered}
$$

Normal Stress Distribution due to bending moment $1\left(M_{y}\right)$ at point ' a ':

$\sigma_{\mathrm{x} 2}=\frac{\mathrm{M}_{\mathrm{y}} \mathrm{z}}{\mathrm{I}}=\frac{75 \mathrm{~N} . \mathrm{mx}(0.015 \mathrm{~m})^{3}}{\frac{\pi}{4} \times(0.015 \mathrm{~mm})^{4}}$

$$
\sigma_{\mathrm{x} 2}=28.29 \mathrm{MPa} \text { (tensile) }
$$

Normal Stress Distribution due to bending moment $2\left(M_{z}\right)$ at point ' b ':

State of stress at point \boldsymbol{a}^{\prime} : $\quad \boldsymbol{\sigma}_{\mathbf{x}}=\sigma_{\mathrm{x} 1}+\sigma_{\mathrm{x} 2}=28.99 \mathrm{MPa}$

$$
\begin{aligned}
& \boldsymbol{\sigma}_{\mathbf{y}}=0 \mathrm{Mpa} \\
& \boldsymbol{\sigma}_{\mathbf{y}}=0 \mathrm{Mpa} \\
& \boldsymbol{\tau}_{\mathbf{x y}}=\tau_{\mathrm{xy} 1}+\tau_{\mathrm{xy} 2}=22.63 \mathrm{MPa} \\
& \boldsymbol{\tau}_{\mathbf{y z}}=0 \mathrm{Mpa} \\
& \boldsymbol{\tau}_{\mathbf{z x}}=0 \mathrm{Mpa}
\end{aligned}
$$

POINT ' b '

Stress distribution due to torsional loading $\left(M_{x}\right)$ at point ' b ' :

$$
\begin{gathered}
\tau_{\mathrm{xz} 1}=\frac{\mathrm{T}_{\mathrm{H}} \mathrm{R}}{\mathrm{I}_{\mathrm{P}}}=\text { linear in radial position } \\
\mathrm{I}_{\mathrm{p}}=\text { polar moment of area } \\
\tau_{\mathrm{xz} 1}=\frac{112.5 \mathrm{~N} . \mathrm{m} \times 0.015 \mathrm{~m}}{\frac{\pi}{2} \times(0.015)^{4} \mathrm{~m}^{4}} \\
\tau_{\mathrm{xz} 1}=21.22 \mathrm{MPa}
\end{gathered}
$$

Stress distribution due to axial loading $\left(B_{x}\right)$ at point ' b ':

Stress distribution due to Shear force $1\left(B_{y}\right)$ loading at point ' b ':

$$
\tau_{\mathrm{xy}}=0 \mathrm{MPa}
$$

Normal Stress Distribution due to bending moment $1\left(M_{y}\right)$ at point ' a ':

$$
\sigma_{\mathrm{x} 1}=0 \mathrm{MPa}
$$

Normal Stress Distribution due to bending moment $2\left(M_{z}\right)$ at point ' b ':

b

$$
\begin{gathered}
\sigma_{\mathrm{x} 2}=\frac{\mathrm{M}_{\mathrm{z}} \mathrm{y}}{\mathrm{I}}=\frac{90 \mathrm{~N} . \mathrm{m} \mathrm{x}(0.015 \mathrm{~m})^{3}}{\frac{\pi}{4} \times(0.015 \mathrm{~mm})^{4}} \\
\sigma_{\mathrm{x} 2}=33.95 \mathrm{MPa} \text { (compressive) }
\end{gathered}
$$

State of stress at point ${ }^{\prime} b^{\prime}$:
$\sigma_{\mathrm{x}}=\sigma_{\mathrm{x} 1}+\sigma_{\mathrm{x} 2}=33.24 \mathrm{MPa}$ (compressive)
$\sigma_{\mathrm{y}}=0 \mathrm{Mpa}$
$\sigma_{y}=0$ Mpa
$\tau_{\mathrm{xy}}=0 \mathrm{MPa}$
$\tau_{\mathrm{yz}}=0$ Мра
$\tau_{\mathrm{zx}}=21.22 \mathrm{Mpa}$

Principal stress: $\sigma_{p_{1}}=10.33 \mathrm{MPa}, \sigma_{p_{2}}=-43.57 \mathrm{MPa}, \sigma_{3}=0 \mathrm{MPa}$
Maximum in plane shear stresses: $\tau_{\text {inplane, } \max }=26.95 \mathrm{MPa}$
Absolute shear stress: $\tau_{\text {max,abs }}=26.95 \mathrm{MPa}$

