

Lectures 24-26: Energy methods – Castigliano's theorems

Lecture Book: Chapter 16

Joshua Pribé

Fall 2019



Course outline

- Part 1: Overview of concepts
 - Static equilibrium
 - Stress and strain
 - Mechanical properties of materials
- Part 2: Types of deformation
 - Axial deformation
 - Torsion
 - Bending
- Part 3: Combined loading
 - Energy methods – deformation due to combined loading
 - Stress due to combined loading
 - Failure theories

Objectives

- Calculate the strain energy stored in elastic bodies
- Calculate the work done by external forces and moments
- Use the strain energy to calculate displacements and rotations
 - Work-energy relationship
 - Castigliano's theorem

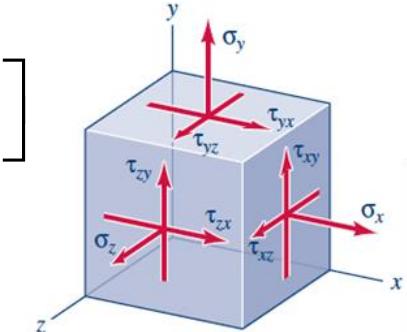
Strain energy

Lecture Book: Ch. 16, pg. 6-7

Strain energy density: energy per unit volume stored in an elastically-deformed body

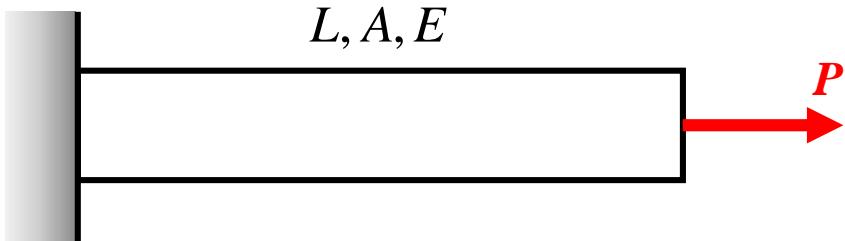
$$\bar{u} = \frac{1}{2} \left[\sigma_x (\varepsilon_x - \alpha \Delta T) + \sigma_y (\varepsilon_y - \alpha \Delta T) + \sigma_z (\varepsilon_z - \alpha \Delta T) + \tau_{xy} \gamma_{xy} + \tau_{xz} \gamma_{xz} + \tau_{yz} \gamma_{yz} \right]$$

Total strain energy: integrate over the volume of the body: $U = \int_V \bar{u} dV$



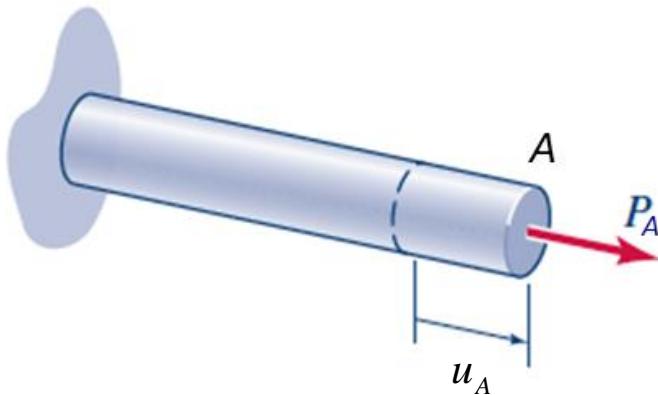
Goal: use what we know about stress and strain from each type of deformation to determine the *strain energy*

Example: axially loaded rod

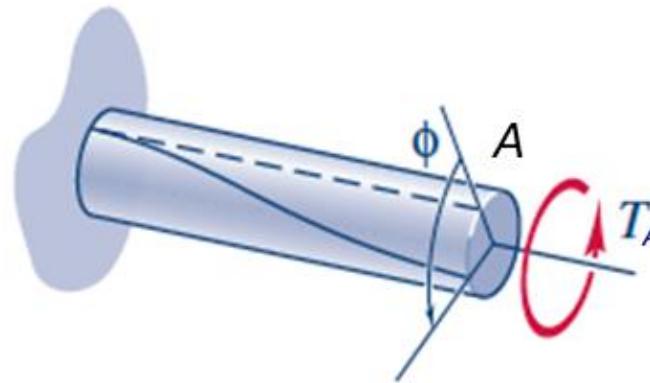


Work done by external loads

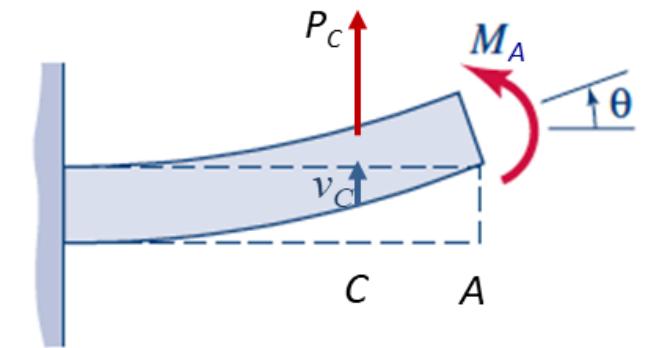
Lecture Book: Ch. 16, pg. 6



$$W^{(P_A)} = \int_0^{u_A} P_A du = \frac{1}{2} P_A u_A$$



$$W^{(T_A)} = \int_0^{\phi_A} T_A d\phi = \frac{1}{2} T_A \phi_A$$

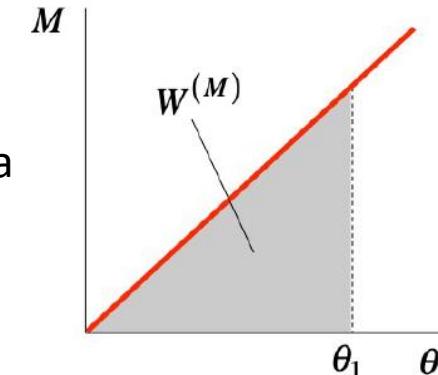


$$W^{(M_A)} = \int_0^{\theta_A} M_A d\theta = \frac{1}{2} M_A \theta_A$$



Linear elastic deformation due to a force:

Linear elastic deformation due to a moment or torque:



$$W^{(P_C)} = \int_0^{v_C} P_C dv = \frac{1}{2} P_C v_C$$

Member loading type	Strain energy: load-based	Strain energy: displacement-based
<i>axial</i>	$U = \frac{1}{2} \int_0^L \frac{F^2 dx}{EA}$	$U = \frac{1}{2} \int_0^L EA \left(\frac{du}{dx} \right)^2 dx$
<i>torsion</i>	$U = \frac{1}{2} \int_0^L \frac{T^2}{GI_p} dx$	$U = \frac{1}{2} \int_0^L GI_p \left(\frac{d\phi}{dx} \right)^2 dx$
<i>bending - flexural</i>	$U_\sigma = \frac{1}{2} \int_0^L \frac{M^2}{EI} dx$	$U_\sigma = \frac{1}{2} \int_0^L EI \left(\frac{d^2 u}{dx^2} \right)^2 dx$
<i>bending - shear</i>	$U_\tau = \frac{1}{2} \int_0^L \frac{f_s V^2}{GA} dx$	

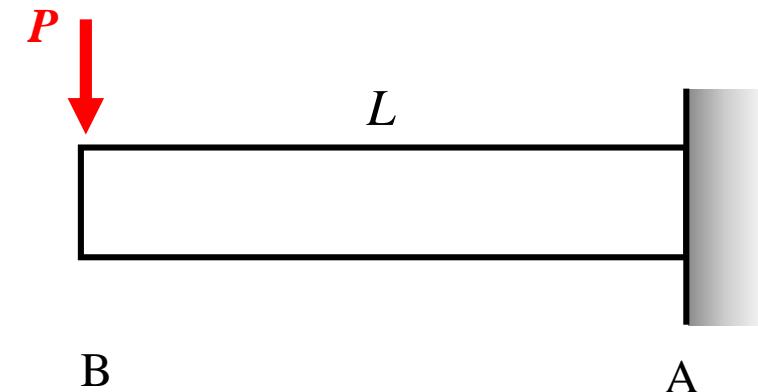
Work-energy relation: all of the work done on an elastic body is stored as strain energy: $W = U$

Example

Find the vertical deflection at point B using the work-energy relationship.

The beam has Young's modulus E and second area moment I .

Neglect shear strain energy due to bending.



Castigliano's theorem: Determinate structures

Castigliano's Second Theorem **Lecture Book: Ch. 16, pg. 11**

Consider a determinate linear elastic body acted on by:

N_P forces P_i ,

N_M moments M_i , and

N_T torques T_i

Of all possible equilibrium configurations of the body, the actual configuration is the one for which:

$$\Delta_i = \frac{\partial U}{\partial P_i} \quad i = 1, 2, \dots, N_P$$

$$\theta_i = \frac{\partial U}{\partial M_i} \quad i = 1, 2, \dots, N_M$$

$$\phi_i = \frac{\partial U}{\partial T_i} \quad i = 1, 2, \dots, N_T$$

where $(\Delta_i, \theta_i, \phi_i)$ are the displacements, slopes (or in-plane rotations), and angles of twist corresponding to and in the direction of the applied loads (P_i, M_i, T_i)

Castigliano's theorem: Indeterminate structures

Castigliano's Second Theorem **Lecture Book: Ch. 16, pg. 11**

Consider an **indeterminate** linear elastic body acted on by N_P forces P_i , N_M moments M_i , and N_T torques T_i

Now, there are also N_R *redundant* reaction forces R_i in the strain energy function.

Of all possible equilibrium configurations of the body, the actual configuration is the one for which:

$$\Delta_i = \frac{\partial U}{\partial P_i} \quad i = 1, 2, \dots, N_P$$

$$\theta_i = \frac{\partial U}{\partial M_i} \quad i = 1, 2, \dots, N_M$$

AND

$$0 = \frac{\partial U}{\partial R_i} \quad i = 1, 2, \dots, N_R$$

for all redundant reactions R_i

$$\phi_i = \frac{\partial U}{\partial T_i} \quad i = 1, 2, \dots, N_T$$

where $(\Delta_i, \theta_i, \phi_i)$ are the displacements, slopes (or in-plane rotations), and angles of twist corresponding to and in the direction of the applied loads (P_i, M_i, T_i)

Bonus 3-D example

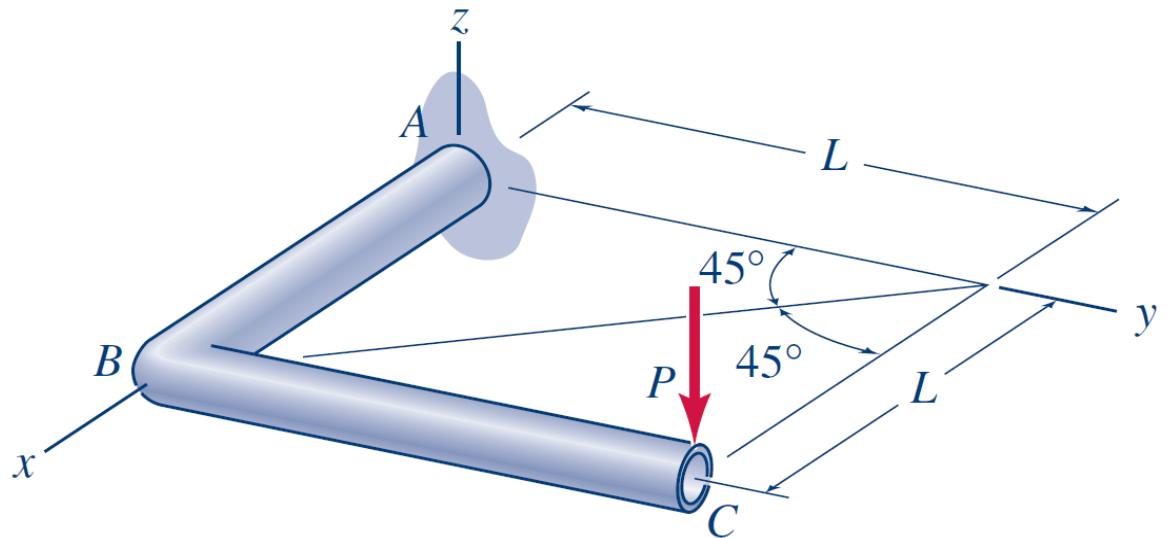
Determine the vertical displacement at C

Points A, B, and C lie in the x-y plane

Young's modulus E , the shear modulus G , and the second area moment I are constant

The polar area moment is $I_p = 2I$

Neglect shear strain energy due to bending



$$\frac{\partial U}{\partial P} = \frac{2PL^3}{3EI} + \frac{PL^3}{2GI} \Rightarrow (v_z)_C = \frac{2PL^3}{3EI} + \frac{PL^3}{2GI} \text{ downward}$$

Summary for Castigliano's theorem

1. Determine what “dummy loads” are needed
2. FBD and equilibrium for the entire structure. *Include all dummy loads!*
3. Indeterminate \rightarrow choose redundant reactions R_i and get all reactions in terms of redundant reactions
4. Divide the beam into sections
 - a) Section changes: external supports, changes in geometry, or changes in load
5. Cut each section; use equilibrium to find the internal resultants
 - a) Sign convention is not important for internal resultants since they are squared in the energy
6. Internal resultants \rightarrow strain energy in each segment \rightarrow total strain energy ($U = U_1 + U_2 + U_3 + \dots$)
 - a) *Sanity warning: Do not expand the squared terms in the integrals!!!*
7. For indeterminate problems: find all the reactions
 - a) Take $0 = \partial U / \partial R_i$, set all dummy loads to 0, and solve together with the equilibrium equations
8. Find displacements and rotations: $\Delta_i = \partial U / \partial P_i$
 - a) Set all dummy loads to 0 after taking the derivative