Lectures 20-23: Beams— Deflections

Lecture Book: Chapter 11

Joshua Pribe

Fall 2019

Objectives for beams

- Two weeks ago (end of Exam 1 material)
- Calculate the internal shear force and bending moment in beams
- Visualize these internal resultants using shear force and bending moment diagrams
- Last week (start of Exam 2 material)
- Calculate the flexural stress distribution due to bending moments
- Calculate the transverse shear stress distribution due to shear forces
- Today and next week
- Calculate deflections and rotations of beams
- Use the deflections to solve statically indeterminate problems
- These are significantly more complex than indeterminate axial loading and torsion problems
- Most of my examples will not be out of the Lecture Book

Deflections of beams: Overview

Recall the equilibrium equations for the internal shear force and bending moment:

$$
\frac{d V}{d x}=p(x) \quad \frac{d M}{d x}=V(x)
$$

Lecture Book: Chapter 11, Page 2
In our derivation of the flexural stress, we also found the moment-curvature equation:

$$
\begin{aligned}
& \varepsilon=-\frac{y}{\rho}, \sigma=-E \frac{y}{\rho} \\
& \Rightarrow M=\frac{E I}{\rho}
\end{aligned}
$$

If the beam is long and thin, this equation is accurate even when the beam is not in pure bending

Derivation of the governing equation

Goal: relate the moment-curvature equation to the angle of rotation θ and deflection v As always, assume small rotations

$$
\frac{1}{\rho}=\frac{M}{E I}
$$

θ measures the angle of a tangent line to the deflection curve $v(x)$:

$$
\theta \approx \tan \theta=\frac{d v}{d x}
$$

The radius of curvature ρ is also related to $v(x)$:

$$
\frac{1}{\rho} \approx \frac{d^{2} v}{d x^{2}} \Rightarrow M(x)=E I \frac{d^{2} v}{d x^{2}}
$$

Derivation of the governing equation

Combine with relationships between bending moment, shear force, and distributed load:

Moment-curvature: $\quad M(x)=E I \frac{d^{2} v}{d x^{2}}$	Constant cross section and material properties
$\frac{d M}{d x}=V(x)=\frac{d}{d x}\left(E I \frac{d^{2} v}{d x^{2}}\right)$	$V(x)=E I \frac{d^{3} v}{d x^{3}}$
Load-deflection: $\quad \frac{d V}{d x}=p(x)=\frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} v}{d x^{2}}\right)$	$p(x)=E I \frac{d^{4} v}{d x^{4}}$

Conclusion: we can integrate the moment-curvature equation twice or the load-deflection equation four times to find the deflection $v(x)$.

Fourth- and second-order methods

Fourth-order method

Start with the governing equation and integrate four times

Second-order method

Cut the beam and use equilibrium to find $M(x)$. Then, integrate the moment-curvature equation twice

Example 1: Fourth-order method

Determine the deflection curve.

Boundary conditions

BC type
Geometric BCs (2 ${ }^{\text {nd }}$ and $4^{\text {th }}$ order method) \quad Natural BCs ($4^{\text {th }}$ order method)

$$
\begin{aligned}
& v=0 \\
& v^{\prime}=0
\end{aligned}
$$

none

$$
V=0
$$

$$
v^{\prime}=0
$$

simple
support
(pin or

roller)

Boundary conditions (cont.)

BC type
Geometric BCs (2 ${ }^{\text {nd }}$ and $4^{\text {th }}$ order method)
Natural BCs (4 ${ }^{\text {th }}$ order method)

none

$$
\begin{aligned}
& V\left(0^{+}\right)=+P \\
& M(0)=0
\end{aligned}
$$

external
force

none
$V\left(L^{-}\right)=-P$
$M(L)=0$

none
$V(0)=0$
$M\left(0^{+}\right)=-M_{0}$
external moment

none

$$
\begin{aligned}
& V(L)=0 \\
& M\left(L^{-}\right)=+M_{0}
\end{aligned}
$$

Example 2: Second-order method

Determine the deflection curve. The beam has constant $E I$.

Example 3: Lecture Book, Example 11.4

Determine the deflection curve. The beam has constant $E I$.

Continuity conditions

CC type
Geometric CCs (2 ${ }^{\text {nd }}$ and $4^{\text {th }}$ order method) \quad Natural CCs ($4^{\text {th }}$ order method)
roller

$$
\begin{array}{ll}
v_{2}=v_{1}=0 & \\
v_{2}^{\prime}=v_{1}^{\prime} & M_{1}=M_{2}
\end{array}
$$

$$
\begin{array}{ll}
v_{2}=v_{1} & V_{2}=V_{1} \\
v_{2}^{\prime}=v_{1}^{\prime} & M_{2}=M_{1}
\end{array}
$$

point force	$P_{0}>0$	
		$v_{2}=v_{1}$
$v_{2}^{\prime}=v_{1}^{\prime}$	$V_{2}=V_{1}+P_{0}$	
		$M_{2}=M_{1}$

$$
\begin{aligned}
& v_{2}=v_{1} \\
& v_{2}^{\prime}=v_{1}^{\prime}
\end{aligned}
$$

$$
V_{2}=V_{1}
$$

$$
M_{2}=M_{1}-M_{0}
$$

pin with force

$$
v_{2}=v_{1}
$$

$$
\begin{aligned}
& V_{2}=V_{1}+P_{0} \\
& M_{2}=M_{1}=0
\end{aligned}
$$

Example 4: Lecture Book, Example 11.10

Determine the reactions at A and B and the deflection curve. The beam has constant $E I$.

Example 5

Determine the deflection curve. The beam has constant $E I$.

Example 6

Determine the deflection curve. The beam has constant $E I$.

Procedure: $2^{\text {nd }}$-order method

1. FBD and equilibrium for the entire beam \rightarrow equations for reaction forces and moments
2. Divide the beam into segments. Use FBDs and equilibrium to find equations for the moment $M(x)$ in each segment
3. Write down the moment-curvature equation for each segment: $E I v$ " $(x)=M(x)$
4. Integrate the moment-curvature equation twice \rightarrow equations for $v^{\prime}(x)$ and $v(x)$. Remember to include the constants of integration.
5. Write down the geometric BCs and CCs (i.e. BCs and CCs for v 'and v)
6. Use the BCs and CCs to solve for the constants of integration
7. If the problem is indeterminate, you need the BCs and CCs to solve for the reaction forces and moments
8. Calculate $v(x)$ and $v^{\prime}(x)$ at any required points (typically maxima, minima, endpoints)

Recommendation: use the $2^{\text {nd }}$-order method when you have to break the beam into multiple segments

Procedure: $4^{\text {th }}$-order method

1. FBD of the entire beam (do not need to enforce equilibrium)
2. Split the beam into segments. Write down the load function $p(x)$ in each segment.
3. If there are no distributed loads in a segment, $p(x)=0$
4. Write down the load-deflection equation for each segment: EIv"" $(x)=p(x)$
5. Integrate load-deflection equation four times \rightarrow equations for $V(x), M(x), v^{\prime}(x), \& v(x)$. Remember to include the constants of integration.
6. Write down the natural and geometric BCs and CCs (i.e. BCs and CCs for $V, M, v^{\prime}, \& v$)
7. Use the BCs and CCs to solve for the constants of integration
8. You can also determine any unknown reaction forces and moments if required
9. Calculate $v(x)$ and $v^{\prime}(x)$ at any required points (typically maxima, minima, endpoints)

If you are confused about signs, remember: $V\left(x^{+}\right)=V\left(x^{-}\right)+P, \quad M\left(x^{+}\right)=M\left(x^{-}\right)-M_{0}$ (for upward P and CCW M_{0})

