Lecture 5: Stress and strain—Generalized concepts

Joshua Pribe

Fall 2019

Objectives

- Review states of stress, generalized Hooke's law (Chapter 5 pre-week video)
 - Show how this relates to the normal and shear stresses we saw before
 - Remember: assume homogeneous, isotropic materials
 - Combine thermal and mechanical strains
- Illustrate these ideas with examples

Normal and shear stress

States of stress

Three dimensions

<u>Plane stress (two dimensions)</u> 3 independent components of stress 2 normal: σ_x , σ_y

1 shear: $\tau_{_{xy}}$

Generalized Hooke's law

Add together <u>uniaxial load cases</u> and <u>temperature change</u> \rightarrow extensional (normal) strain for arbitrary loading

		Thermal strains		
	Strains due to mechanical loading in the x-direction	Strains due to mechanical loading in the y-direction	Strains due to mechanical loading in the z-direction	Strains due to temperature change, ΔT
	σ_x	$z \qquad \qquad$	$ \begin{array}{c} y \\ \sigma_z \\ z \\ \sigma_z \end{array} $	Δz^{*} Δy^{*} Δy^{*}
	$\varepsilon_x = \sigma_x / E$	$\varepsilon_x = -v\varepsilon_y = -v\sigma_y / E$	$\boldsymbol{\varepsilon}_{x} = -\boldsymbol{v}\boldsymbol{\varepsilon}_{z} = -\boldsymbol{v}\boldsymbol{\sigma}_{z} / E$	$\varepsilon_{x,T} = \alpha \Delta T$
y	$\varepsilon_{y} = -v\varepsilon_{x} = -v\sigma_{x} / E$	$\varepsilon_y = \sigma_y / E$	$\varepsilon_y = -v\varepsilon_z = -v\sigma_z / E$	$\varepsilon_{y,T} = \alpha \Delta T$
e,	$\varepsilon_z = -v\varepsilon_x = -v\sigma_x / E$	$\varepsilon_z = -v\varepsilon_y = -v\sigma_y / E$	$\boldsymbol{\varepsilon}_{z} = \boldsymbol{\sigma}_{z} / E$	$\varepsilon_{z,T} = \alpha \Delta T$

Shear strains *always* related to shear stresses by $\gamma_{xy} = \tau_{xy}/G$, $\gamma_{xz} = \tau_{xz}/G$, $\gamma_{yz} = \tau_{yz}/G$

Example: Pre-week quiz, Problem 3

The 2-D body (i.e. plane stress) is *fully constrained in the y direction* and is *free to expand in the x direction*. If we increase the temperature by ΔT , what are the normal stresses and strains in the body?

Example: Volumetric strain

The "volumetric strain" is defined as the change in volume divided by the original volume (that is, $\varepsilon_V = \Delta V/V_0$). Show that, for small strains, the volumetric strain is also given by $\varepsilon_V = \varepsilon_x + \varepsilon_y + \varepsilon_z$.

Summary

- Use a *stress element* to show the state of stress (normal and shear) at a point in a body
- Use the **generalized Hooke's law** to relate stress and strain for any arbitrary loading and temperature change
 - Assumptions: homogeneous, isotropic material; linear elastic deformation; small strains

