Example 16.6

A chair on a ski lift is supported by a steel pipe with outer and inner diameters of $d_{o}=60 \mathrm{~mm}$ and $d_{i}=52 \mathrm{~mm}$, respectively. The weight of the pipe may be neglected as compared to the weight $W=2 \mathrm{kN}$ of the chair and occupants.
a) Determine the stresses at point C on the front section of the pipe at the location shown. The x -axis is parallel to the angled section of the pipe.
b) Determine the principal stresses and the maximum in-plane shear stress at point C.
c) Determine the maximum tensile stress in the straight section DE of the pipe.

From $F B D$ of cut at C :
$\Sigma M_{c}=-0.6 \mathrm{~W}+\mathrm{M}=0 \quad \Rightarrow \mathrm{M}=0.6 \mathrm{~W}$
$\Sigma F_{x}=F-W \cos \theta=0 \Rightarrow F=W \cos \theta$
$\Sigma F_{y}=V-W \sin \theta \Rightarrow D=W \sin \theta$

Stresses at C

(1)

(2)

At \subset are have:

$$
\begin{aligned}
& \sigma=\sigma_{1}=\frac{F}{A} \\
& \tau=\tau_{3} l_{\text {max }}=\frac{V A^{*} \bar{y}^{*}}{I t}
\end{aligned}
$$

$\omega /$

$$
\begin{aligned}
& A=\pi\left(\frac{d_{0}}{2}\right)^{2}-\pi\left(\frac{d i}{2}\right)^{2} \\
& I=\frac{\pi}{4}\left(\frac{d_{0}}{2}\right)^{4}-\frac{\pi}{4}\left(\frac{d_{i}}{2}\right)^{4} \\
& A^{*} q^{*}=\frac{\pi}{2}\left(\frac{d d_{0}}{2}\right)^{2} \frac{4}{3 \pi}\left(\frac{d d_{0}}{2}\right)-\frac{\pi}{2}\left(\frac{d_{i}}{2}\right)^{2} \frac{4}{3 \pi}\left(\frac{d i}{2}\right) \\
& t=d_{0}-d_{i} \\
& \therefore \quad G_{\text {ave }}=\frac{\pi}{2} \\
& \rightarrow \begin{array}{l}
R=\sqrt{\left(\frac{\pi}{2}\right)^{2}+\tau^{2}} \\
\rightarrow \\
\left\{\begin{array}{l}
\sigma_{1}=\sigma_{\text {ave }}+R \\
\sigma_{2}=\sigma_{\text {ave }}-R \\
\left(\tau_{\text {max }}\right)_{\text {In-plane }}=R
\end{array}\right.
\end{array}
\end{aligned}
$$

(C) Make cut through section DE

$$
\begin{aligned}
& \sum F_{1}=F-W=0 \Rightarrow F=W \\
& \sum M_{4}=-W(1)+M=0 \Rightarrow M=W
\end{aligned}
$$

Stresses at cut

(1)

(2)

Make tensile stress occurs at " a ":

$$
\begin{aligned}
\sigma & =\sigma_{1}+\sigma_{2} l_{\text {max }} \\
& =\frac{F}{A}+\frac{M y}{I} ; y=\frac{d_{0}}{2}
\end{aligned}
$$

