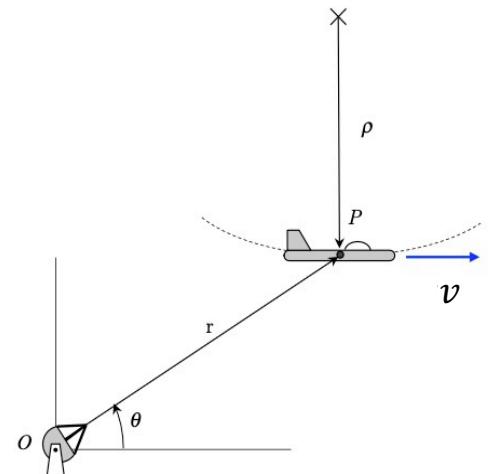


Given: At the instant when at the bottom of a loop, an airplane P is traveling horizontally with a constant speed v . At that position, the path of the path has a radius of curvature of ρ . A radar tracking P at point O sees the aircraft at a distance of r and at an angle of θ .

Find: At this instant: determine \dot{r} , $\dot{\theta}$, \ddot{r} and $\ddot{\theta}$ in terms of v , ρ , r and θ .



Solution:

The path and polar unit vectors have been provided for you in the figure.

a) Write \hat{e}_r and \hat{e}_θ in terms of \hat{e}_t and \hat{e}_n :

$$\hat{e}_r = \cos\theta \hat{e}_t + \sin\theta \hat{e}_n$$

$$\hat{e}_\theta = -\sin\theta \hat{e}_t + \cos\theta \hat{e}_n$$

b) Find \dot{r} and $\dot{\theta}$:

$$\dot{r} = \vec{v} \cdot \hat{e}_r = (v \hat{e}_t) \cdot (\cos\theta \hat{e}_t + \sin\theta \hat{e}_n) = v \cos\theta \quad \dot{r}$$

$$r\dot{\theta} = \vec{v} \cdot \hat{e}_\theta = (v \hat{e}_t) \cdot (-\sin\theta \hat{e}_t + \cos\theta \hat{e}_n) = -v \sin\theta \quad \dot{\theta}$$

c) Find \ddot{r} and $\ddot{\theta}$:

$$\ddot{r} - r\dot{\theta}^2 = \vec{a} \cdot \hat{e}_r = \left(\frac{v^2}{\rho} \hat{e}_n\right) \cdot (\cos\theta \hat{e}_t + \sin\theta \hat{e}_n) = \frac{v^2}{\rho} \sin\theta \quad \ddot{r}$$

$$r\ddot{\theta} + 2\dot{r}\dot{\theta} = \vec{a} \cdot \hat{e}_\theta = \left(\frac{v^2}{\rho} \hat{e}_n\right) \cdot (-\sin\theta \hat{e}_t + \cos\theta \hat{e}_n) = \frac{v^2}{\rho} \cos\theta \quad \ddot{\theta}$$

