

ME 274: Basic Mechanics II

Week 1 – Monday, January 12

Particle kinematics: Cartesian description

Instructor: Manuel Salmerón

Today's Agenda

1. Course Logistics
2. Introduction
3. Motivating Example
4. Kinematic Equations for Cartesian Coordinates
5. Examples
6. Summary and Closure

1. Course Logistics

Instructor: Manuel Salmerón
E-mail: salmeron@purdue.edu
Office hours: MW, 9:30 – 10:30 AM, ME 2008

1. Course Logistics

Important points:

- Lecture book: *Dynamics – A Lecturebook*, Krousgrill and Rhoads (University Bookstore)
- Website: <https://www.purdue.edu/freeform/me274/>
- Discussion threads: log in, get approved, and comment (bonus points!)
- Quizzes: unannounced, need to be in person
- Attendance: not required, but expected; taken through brief activities
- Homework: assignments to be submitted via Gradescope. See syllabus for submission requirements and format.

1. Course Logistics

Grading:

Homework and quizzes*: **25%**

Midterm and final exams: **75%**

Bonus points**: **??%**

* The share for homework assignments and quizzes will be decided based on the number of quizzes at the end of the semester.

** There will be bonus points for commenting in the website's blog AND for attending class. Attendance will be taken through activities.

Homework + Quizzes + Bonus Points \leq 25%

2. Introduction

Dynamics studies the motion of particles and bodies, and the forces causing such motion. It can be divided into:

Kinematics: describes motion

How things move?

and

Kinetics: studies forces causing motion

Why things move?

2. Introduction

Kinematic Equations

Let $s(t)$ be the position of a particle at time t . Thus, the velocity, $v(t)$, and acceleration, $a(t)$, are given by...

- Navigate to pollev.com/manuelsalmeron386 (or scan the QR code)
- To get credit, enter your first and last names when asked

2. Introduction

Kinematic Equations

Let $s(t)$ be the position of a particle at time t . Thus, the velocity, $v(t)$, and acceleration, $a(t)$, are given by...

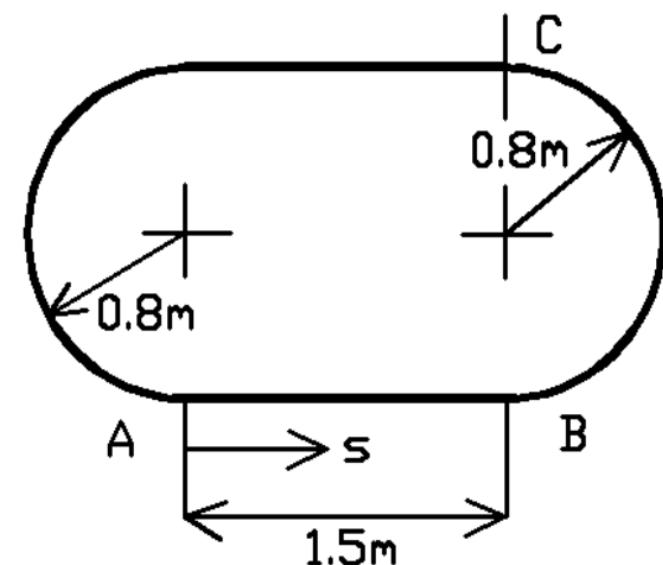
$$v(t) = \frac{ds}{dt} \quad \text{and} \quad a(t) = \frac{dv}{dt} = \frac{d^2s}{dt^2}$$

3. Motivating Example

The figure represents the track of a toy train. The train starts from point A and moves according to the expression $s(t) = 0.1t^2$, where $s(t)$, measured in meters, is the distance of the train from point A along the track.

Taking point A as the origin, determine:

- the position and velocity of the train at $t = 2$ sec;
- its position and velocity at $t = 5$ sec.



3. Motivating Example

Given: the expression for the position, $s(t) = 0.1t^2$, and the starting point A

Find:

- the position, $s(t)$, and velocity, $v(t)$, of the train at $t = 2$ sec

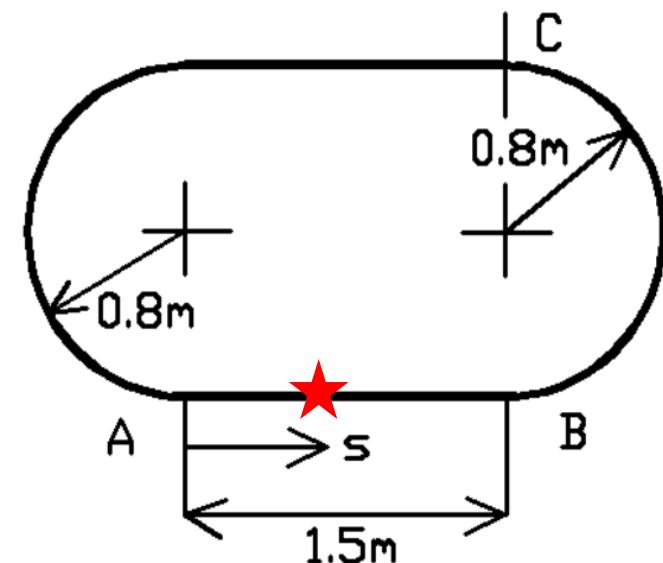
Solution:

a) From the kinematic relationship $v(t) = ds/dt$, we have:

$$v(t) = \frac{d(0.1t^2)}{dt} = 0.2t$$

Thus,

$$s(t = 2) = 0.4 \text{ m and } v(t = 2) = 0.4 \text{ m/s}$$



3. Motivating Example

Given: the expression for the position, $s(t) = 0.1t^2$, and the starting point A

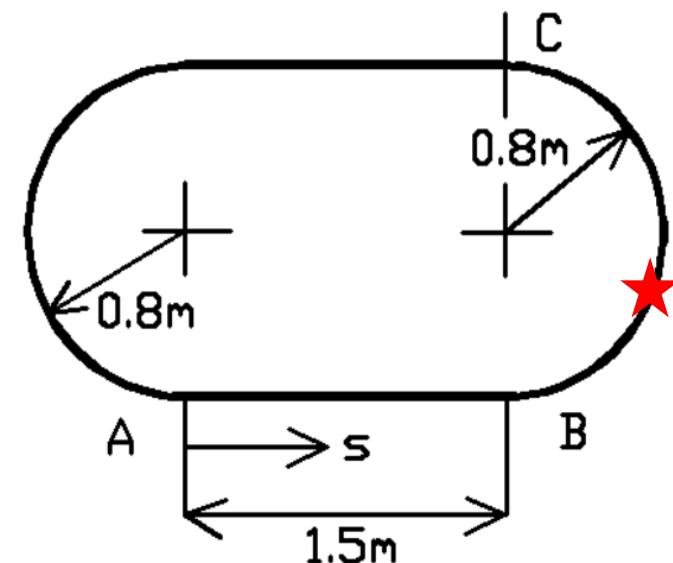
Find:

- the position and velocity of the train at $t = 5$ sec;

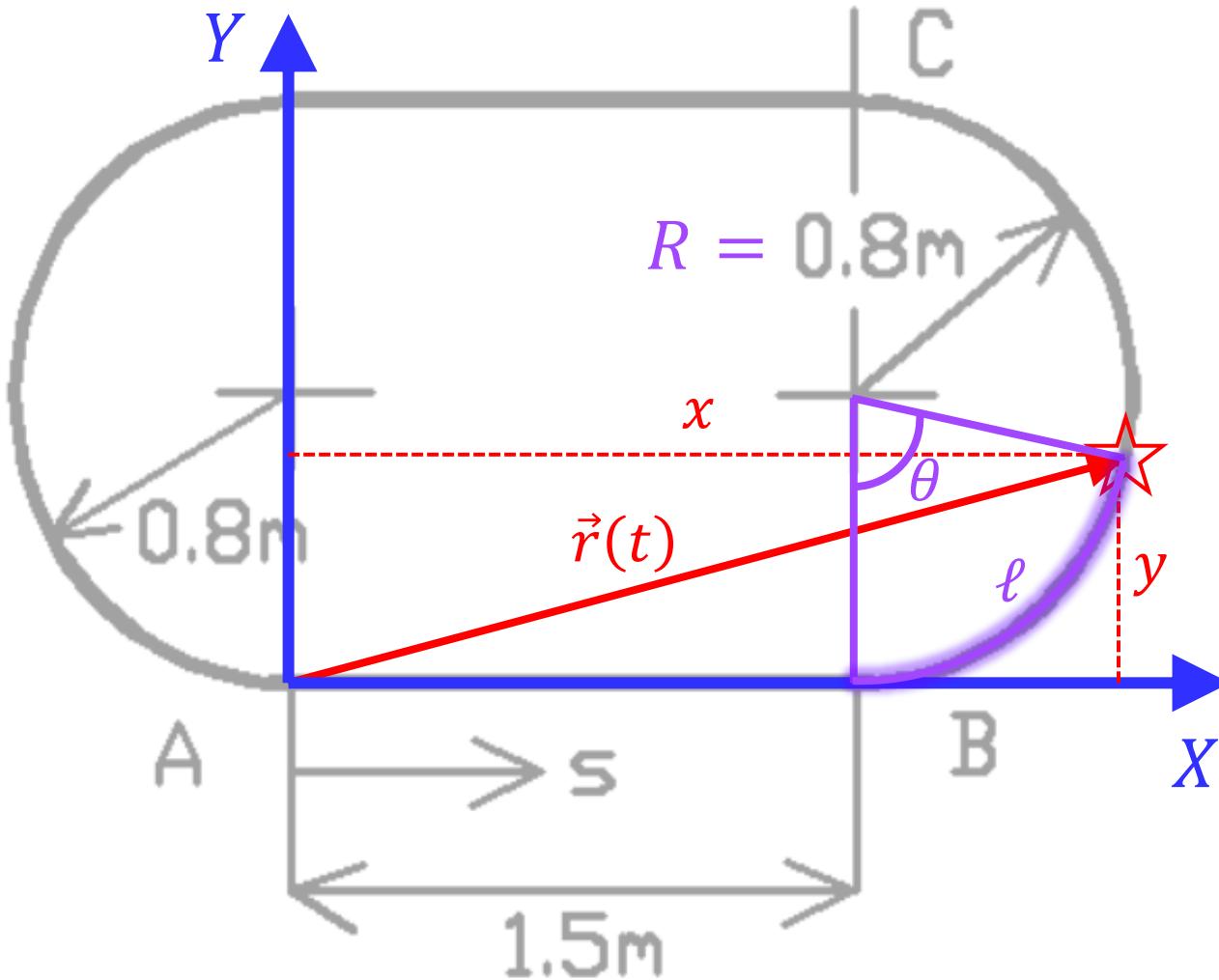
Solution:

b) For $t = 5$ sec: $s(t = 5) = 2.5$ m > 1.5 m

No longer rectilinear motion!



3. Motivating Example



1. Define reference frame
2. Define a position vector, $\vec{r}(t)$
3. Get the coordinates of $\vec{r}(t)$

$$x = 1.5 + R \sin \theta$$

$$y = R - R \cos \theta$$

HINT: the arc length ℓ of a circle of radius R with central angle θ is given by

$$\ell = R\theta$$

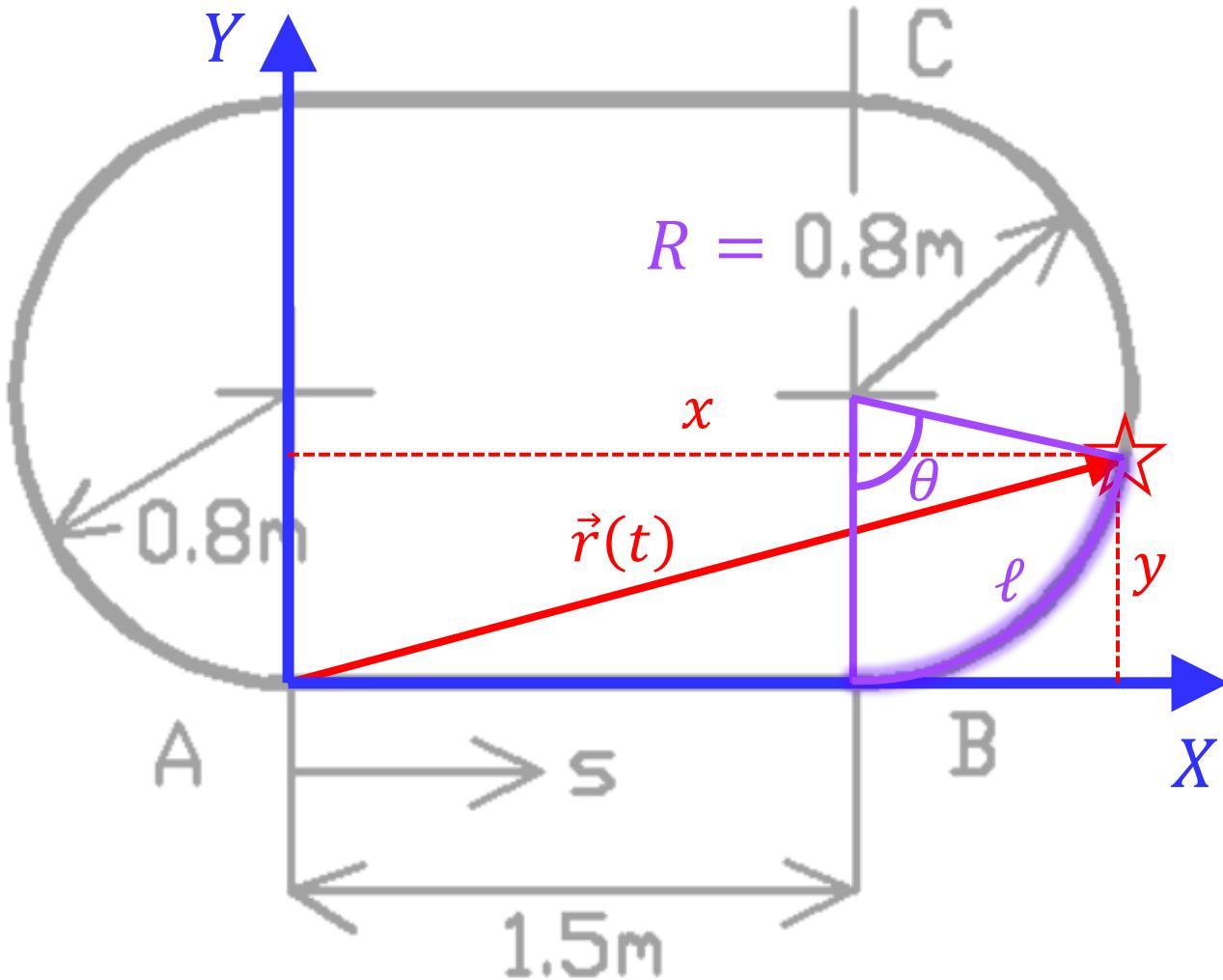
In our problem, $\ell = 1\text{ m}$ and $R = 0.8\text{ m}$:

$$\theta = \frac{\ell}{R} = 1.25 \text{ rad}$$

Thus:

$$\vec{r}(t = 5) = (x\hat{i} + y\hat{j}) \text{ m}$$

3. Motivating Example



1. Define reference frame
2. Define a position vector, $\vec{r}(t)$
3. Get the coordinates of $\vec{r}(t)$

$$x = 1.5 + R \sin \theta$$

$$y = R - R \cos \theta$$

HINT: the arc length ℓ of a circle of radius R with central angle θ is given by

$$\ell = R\theta$$

In our problem, $\ell = 1\text{ m}$ and $R = 0.8\text{ m}$:

$$\theta = \frac{\ell}{R} = 1.25 \text{ rad}$$

Thus:

$$\vec{r}(t = 5) = (2.26\hat{i} + 0.548\hat{j}) \text{ m}$$

3. Motivating Example

Now, for the velocity...

From a), we know $v(t) = 0.2t$:

$$v(t = 5) = 0.2(5) = 1 \text{ m/s}$$

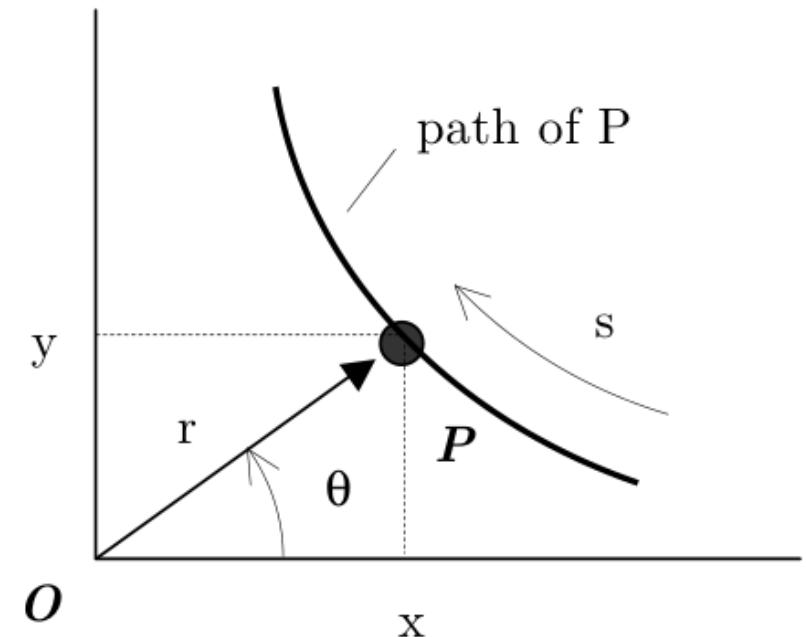
And the direction? – wait for next lecture

4. Kinematic Relations for Cartesian Coordinates

Scalar kinematic relationships do not suffice when we move from rectilinear to curvilinear motion

The following descriptions are more useful:

- Cartesian – path of P in terms of x and y
- Path – position r in terms of a distance s
- Polar – position in terms of r and θ



4. Kinematic Relations for Cartesian Coordinates

Irrespective of the description chosen, the kinematic relationships hold:

$$\vec{v}(t) = \frac{d\vec{r}}{dt} \quad \text{and} \quad \vec{a}(t) = \frac{d^2\vec{r}}{dt^2}$$

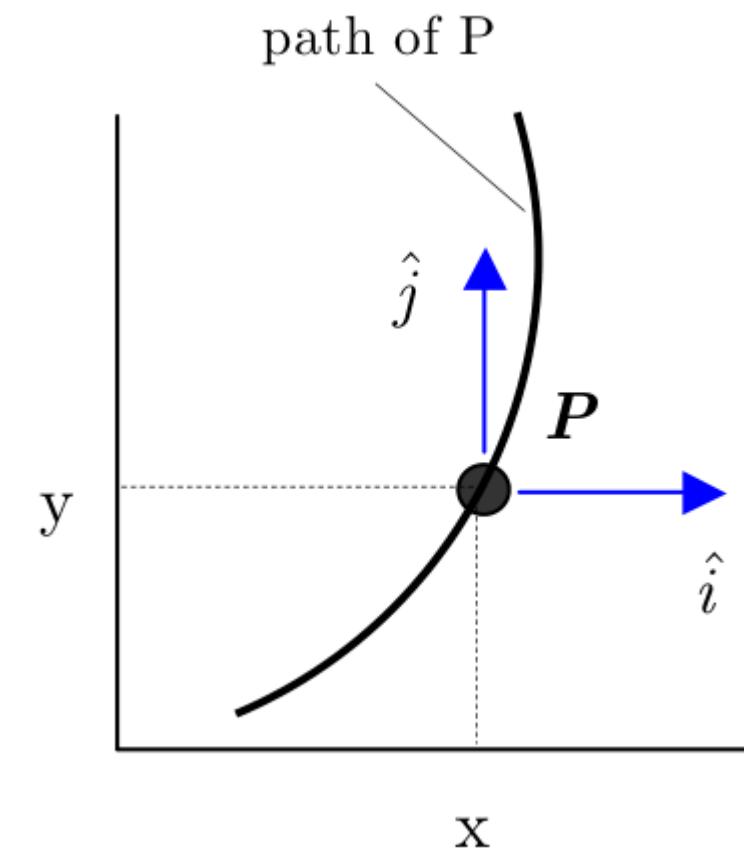
For cartesian coordinates, the position is given by:

$$\vec{r} = x\hat{i} + y\hat{j}$$

Thus:

$$\vec{v} = \left(\frac{dx}{dt} \right) \hat{i} + \left(\frac{dy}{dt} \right) \hat{j} = \dot{x}\hat{i} + \dot{y}\hat{j}$$

$$\vec{a} = \left(\frac{d^2x}{dt^2} \right) \hat{i} + \left(\frac{d^2y}{dt^2} \right) \hat{j} = \ddot{x}\hat{i} + \ddot{y}\hat{j}$$



5. Example

A point moves along a trajectory whose equation is

$$y = x^3$$

according to the law

$$x = 2t$$

where both x and y are in inches and t is in seconds. What are the velocity and the acceleration when $t = 1$ sec?

5. Example

Given: the equation of the trajectory, $y = x^3$, and the law $x = 2t$

Find: the velocity, \vec{v} , and the acceleration, \vec{a}

Solution: we know the kinematic equations:

$$\vec{v} = \dot{x}\hat{i} + \dot{y}\hat{j} \quad \text{and} \quad \vec{a} = \ddot{x}\hat{i} + \ddot{y}\hat{j}$$

$$\dot{x} =$$

$$\ddot{x} =$$

$$\dot{y} =$$

$$\ddot{y} =$$

5. Example

Given: the equation of the trajectory, $y = x^3$, and the law $x = 2t$

Find: the velocity, \vec{v} , and the acceleration, \vec{a}

Solution: we know the kinematic equations:

$$\vec{v} = \dot{x}\hat{i} + \dot{y}\hat{j}$$

and

$$\vec{a} = \ddot{x}\hat{i} + \ddot{y}\hat{j}$$

$$\dot{x} = 2$$

$$\ddot{x} = 0$$

$$\dot{y} = \frac{dy}{dx} \frac{dx}{dt} = \frac{dy}{dx} \dot{x} = (3x^2)(2) = (3 \cdot 4t^2)(2) = 24t^2$$

$$\ddot{y} = \frac{d^2y}{dt^2} = \frac{d}{dt} \left(\frac{dy}{dt} \right) = \frac{d\dot{y}}{dt} = \frac{d}{dt} (24t^2) = 48t$$

Thus, at $t = 1$ sec:

$$\vec{v} = \dot{x}(1)\hat{i} + \dot{y}(1)\hat{j}$$

$$\vec{a} = \ddot{x}(1)\hat{i} + \ddot{y}(1)\hat{j}$$

5. Example

Given: the equation of the trajectory, $y = x^3$, and the law $x = 2t$

Find: the velocity, \vec{v} , and the acceleration, \vec{a}

Solution: we know the kinematic equations:

$$\vec{v} = \dot{x}\hat{i} + \dot{y}\hat{j}$$

and

$$\vec{a} = \ddot{x}\hat{i} + \ddot{y}\hat{j}$$

$$\dot{x} = 2$$

$$\ddot{x} = 0$$

$$\dot{y} = \frac{dy}{dx} \frac{dx}{dt} = \frac{dy}{dx} \dot{x} = (3x^2)(2) = (3 \cdot 4t^2)(2) = 24t^2$$

$$\ddot{y} = \frac{d^2y}{dt^2} = \frac{d}{dt} \left(\frac{dy}{dt} \right) = \frac{d\dot{y}}{dt} = \frac{d}{dt} (24t^2) = 48t$$

Thus, at $t = 1$ sec:

$$\vec{v} = 2\hat{i} + 24\hat{j}$$

$$\vec{a} = 0\hat{i} + 48\hat{j}$$

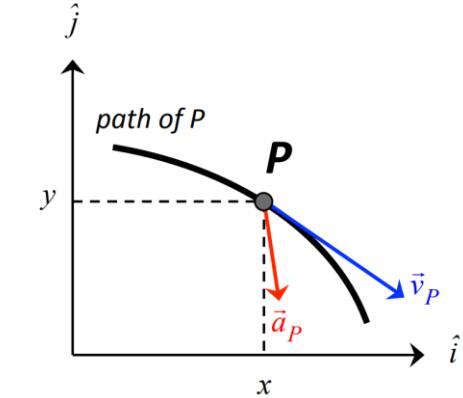
6. Summary and Closure

1. *PROBLEM:* Describe the motion of a point P in Cartesian coordinates

2. *FUNDAMENTAL EQUATIONS:*

$$\vec{v} = \dot{x}\hat{i} + \dot{y}\hat{j}: \quad \text{velocity of the point } P$$

$$\vec{a} = \ddot{x}\hat{i} + \ddot{y}\hat{j}: \quad \text{acceleration of the point } P$$



3. *CHAIN RULE OF DIFFERENTIATION:* If y is given in terms of x (instead of time t)...

$$\dot{y} = \frac{dy}{dt} = \frac{dy}{dx} \frac{dx}{dt} = \dot{x} \frac{dy}{dx}$$

4. *COMMENT:* The Cartesian description is easy to use, but not as useful as other descriptions. More in upcoming lectures...

ME 274: Basic Mechanics II

Week 1 – Wednesday, January 14

Particle kinematics: Path description

Instructor: Manuel Salmerón

Today's Agenda

1. Recap: Cartesian coordinates
2. Path Kinematics
3. Example(s)
4. Summary
5. Homework Questions

1. Recap: Cartesian Coordinates

Kinematic Equations for Cartesian Coordinates:

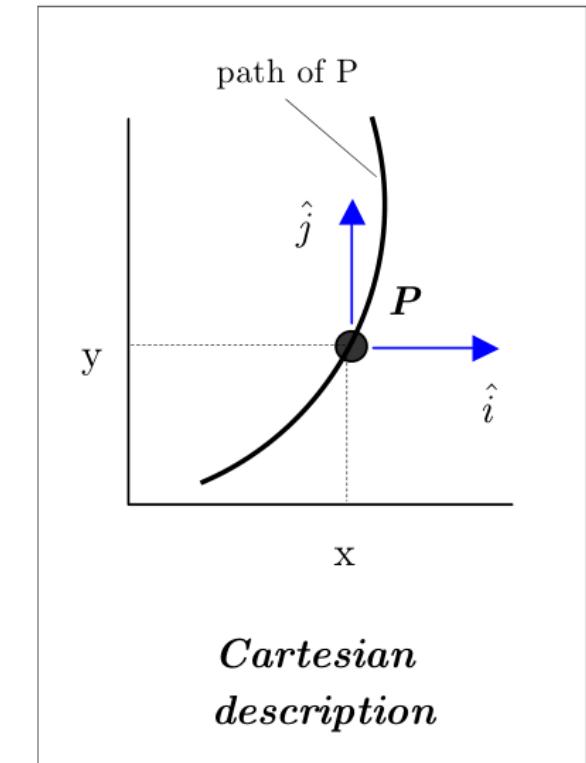
$$\vec{v}(t) = \dot{x}\hat{i} + y\hat{j}$$

$$\vec{a}(t) = \ddot{x}\hat{i} + \dot{y}\hat{j}$$

What if y (or x) is not an EXPLICIT function of t ?

Chain Rule! If $y = f(x)$:

$$\dot{y} = \frac{dy}{dt} = \frac{df}{dx} \frac{dx}{dt} = \dot{x} \frac{df}{dx}$$



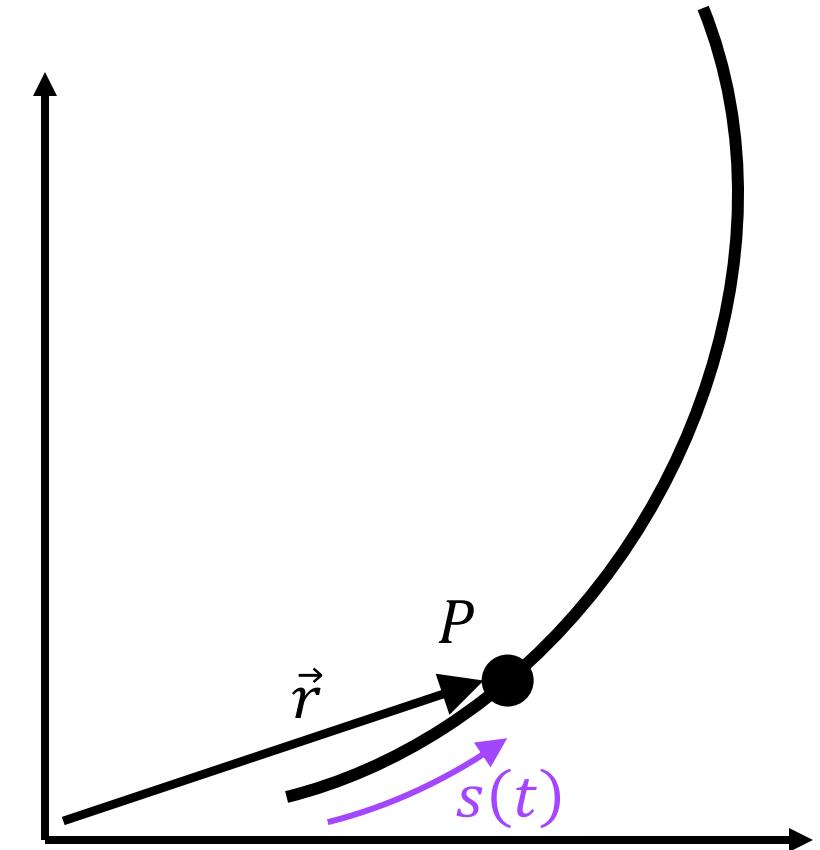
2. Path Kinematics

Position: $\vec{r}(t) = f(s(t))$

Velocity: $\vec{v}(t) = \frac{d\vec{r}}{dt}$

$$\vec{v}(t) = \frac{d\vec{r}}{ds} \frac{ds}{dt} = v \frac{d\vec{r}}{ds}$$

v : speed $d\vec{r}/ds$: direction



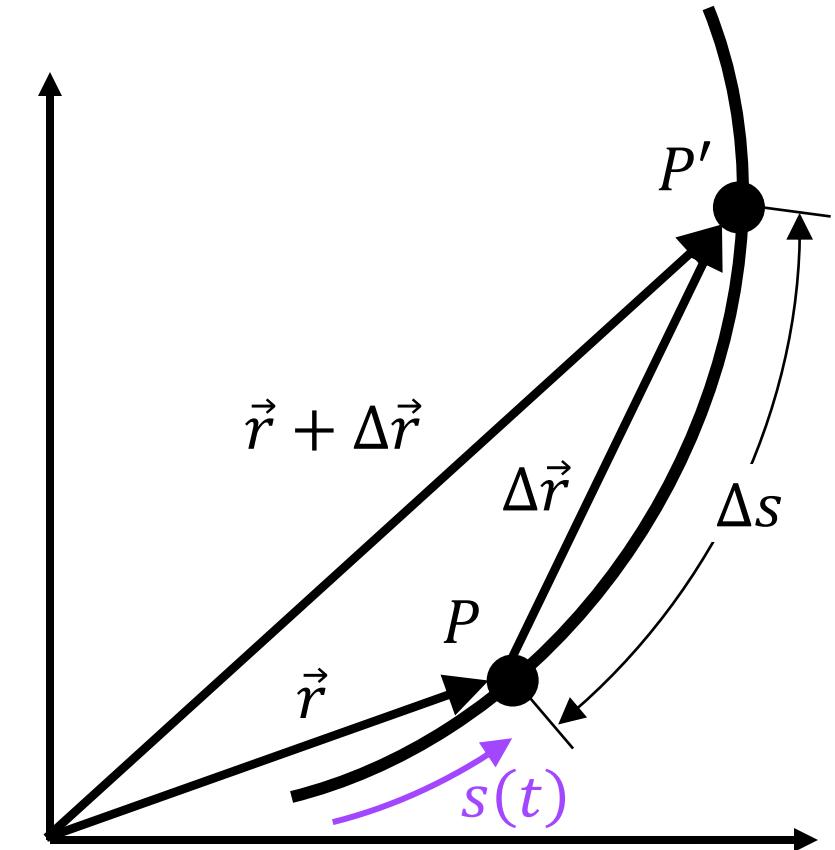
2. Path Kinematics

What can we tell about the direction?

By definition:

$$\frac{d\vec{r}}{ds} = \lim_{\Delta s \rightarrow 0} \frac{\Delta\vec{r}}{\Delta s}$$

What happens as $\Delta s \rightarrow 0$?



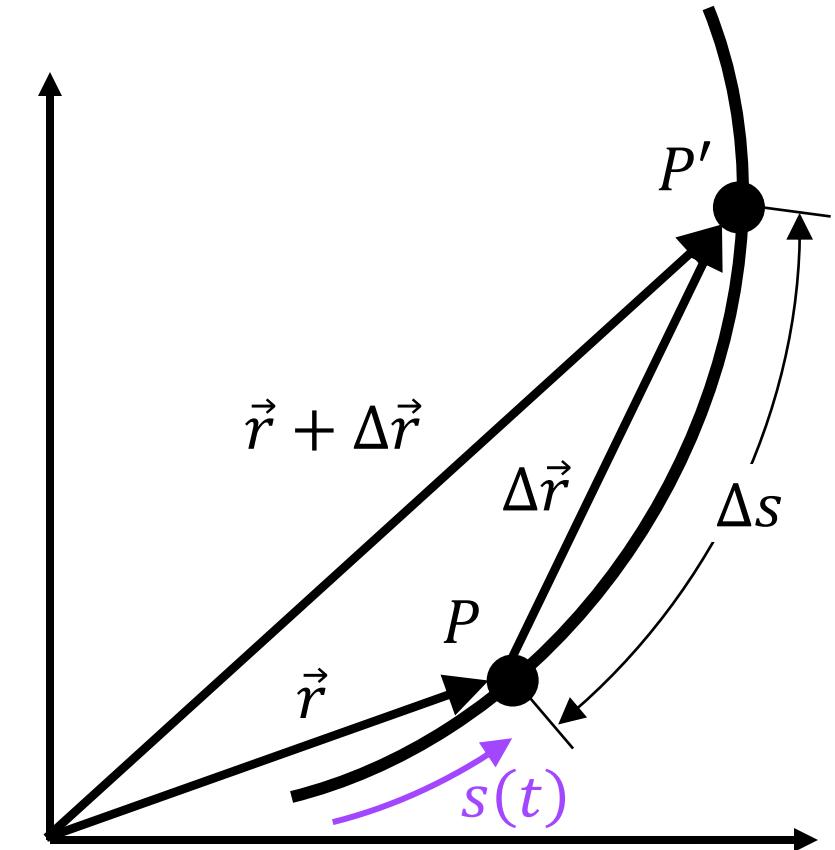
2. Path Kinematics

What can we tell about the direction?

By definition:

$$\frac{d\vec{r}}{ds} = \lim_{\Delta s \rightarrow 0} \frac{\Delta\vec{r}}{\Delta s}$$

What happens as $\Delta s \rightarrow 0$?



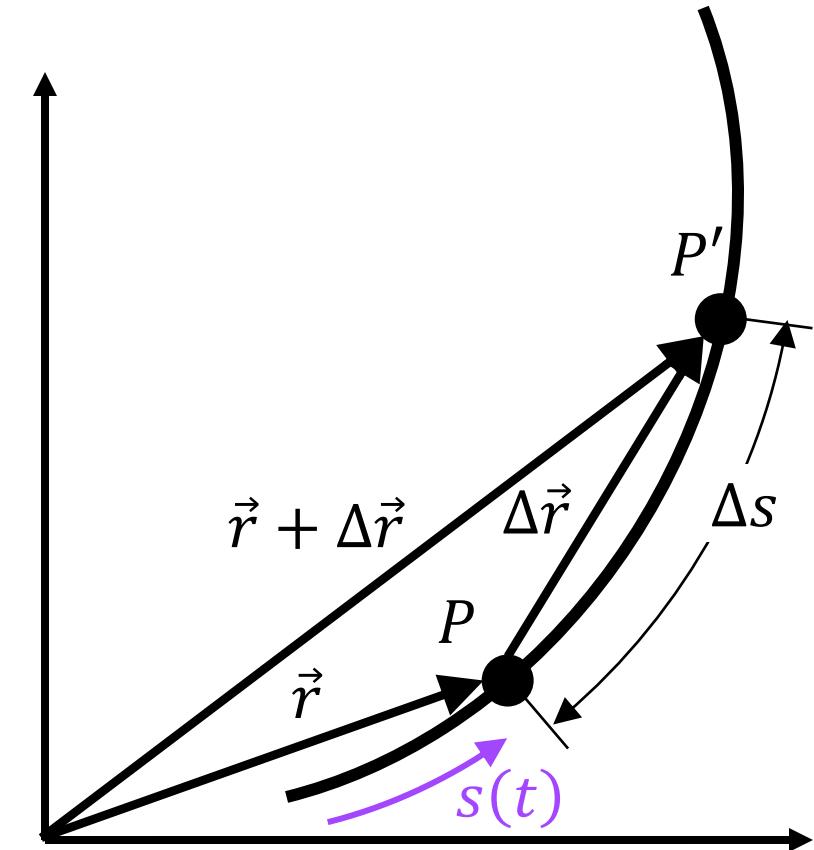
2. Path Kinematics

What can we tell about the direction?

By definition:

$$\frac{d\vec{r}}{ds} = \lim_{\Delta s \rightarrow 0} \frac{\Delta\vec{r}}{\Delta s}$$

What happens as $\Delta s \rightarrow 0$?



2. Path Kinematics

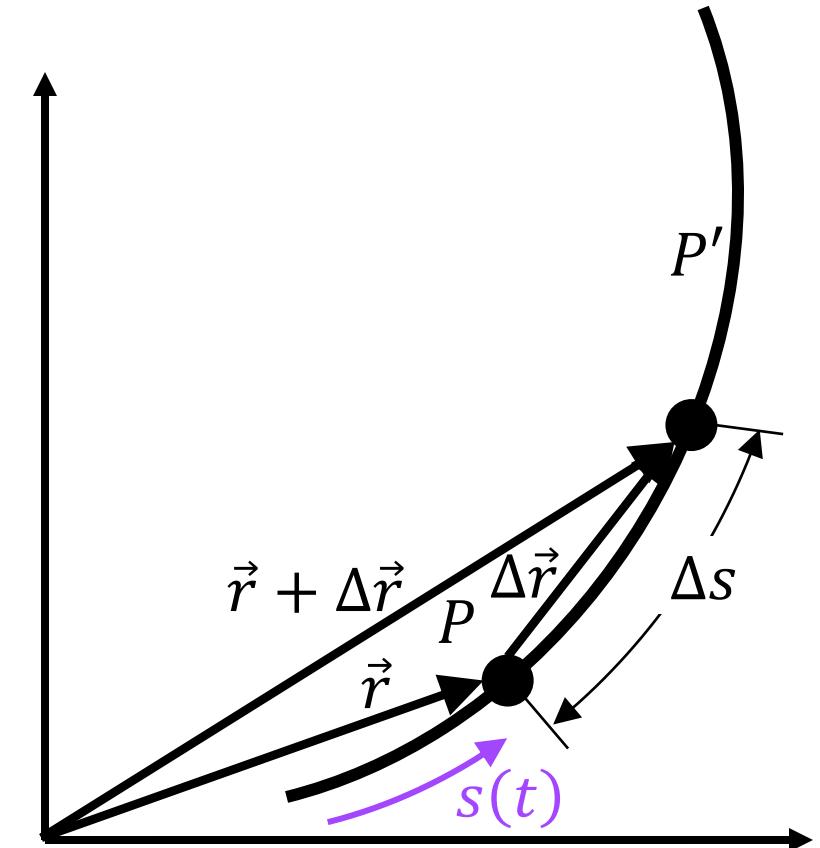
What can we tell about the direction?

By definition:

$$\frac{d\vec{r}}{ds} = \lim_{\Delta s \rightarrow 0} \frac{\Delta\vec{r}}{\Delta s}$$

What happens as $\Delta s \rightarrow 0$?

- $|\Delta\vec{r}| \approx \Delta s$
- $\Delta\vec{r}$ becomes tangent to the path of P



2. Path Kinematics

Thus,

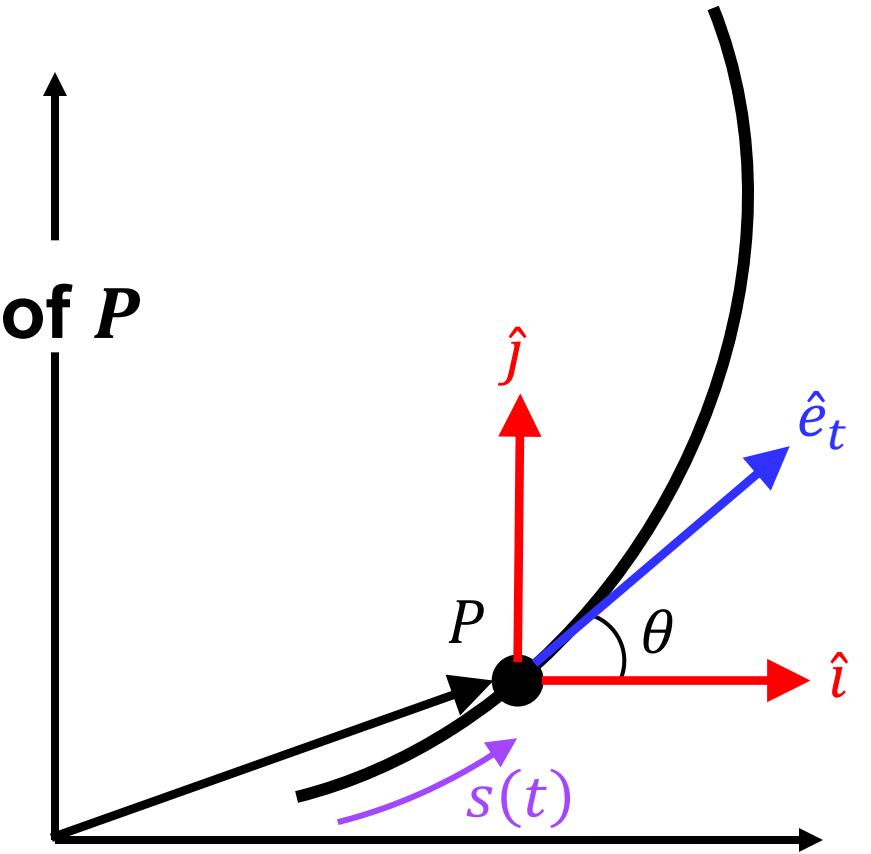
$\frac{d\vec{r}}{ds} = \hat{e}_t$: **unit vector tangent to the path of P**

It can be expressed as:

$$\hat{e}_t = \cos \theta \hat{i} + \sin \theta \hat{j}$$

We can write the velocity as:

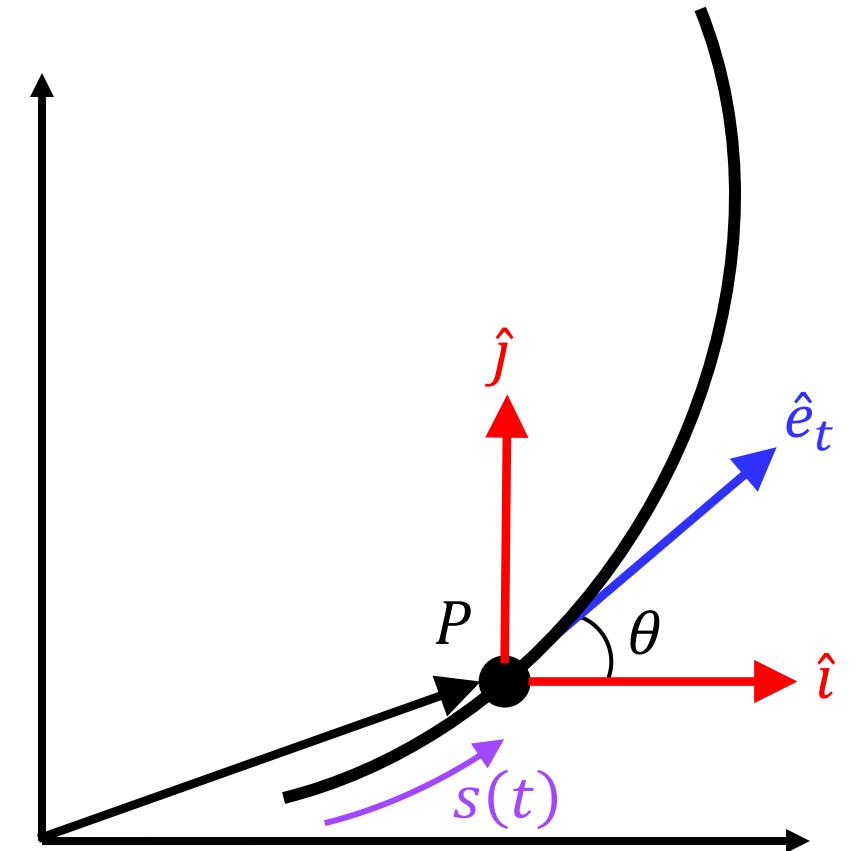
$$\vec{v} = v \hat{e}_t$$



2. Path Kinematics

Now, for the acceleration:

$$\begin{aligned}\vec{a} &= \frac{d\vec{v}}{dt} \\ &= \frac{d}{dt}(\nu \hat{e}_t) \\ &= \frac{dv}{dt} \hat{e}_t + \nu \frac{d\hat{e}_t}{dt} \quad (\text{product rule})\end{aligned}$$



2. Path Kinematics

Remember that:

$$\hat{e}_t = \cos \theta \hat{i} + \sin \theta \hat{j}$$

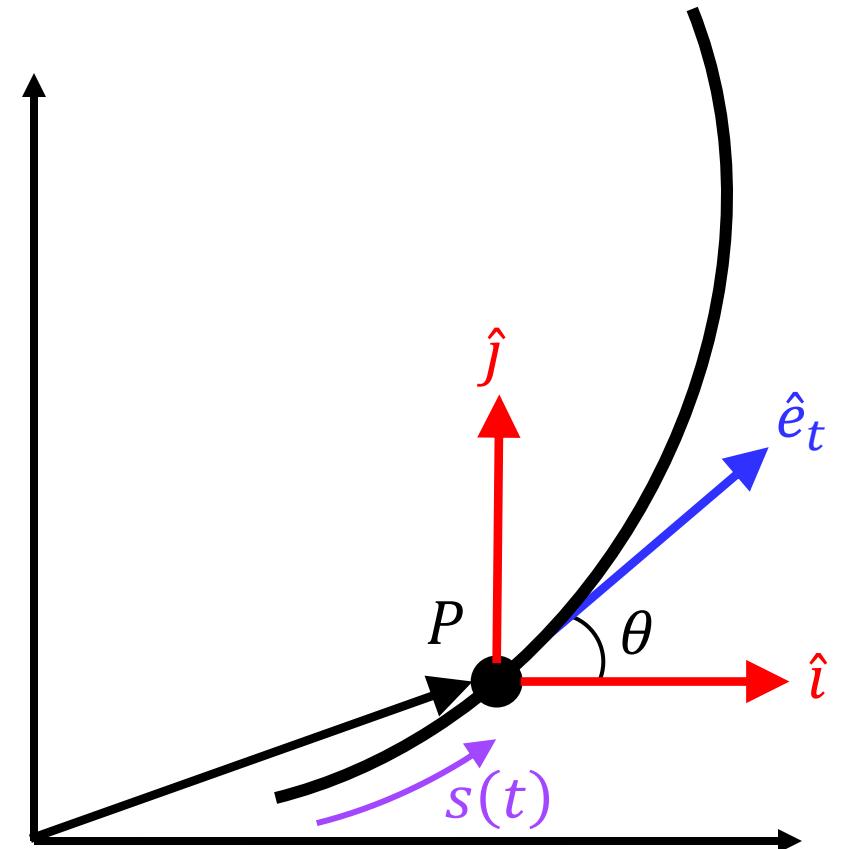
Thus, $\hat{e}_t = f(\theta)$:

$$\vec{a} = \frac{d\vec{v}}{dt} \hat{e}_t + \vec{v} \frac{d\hat{e}_t}{dt} \quad (\text{product rule})$$

$$= \dot{v} \hat{e}_t + \vec{v} \frac{d\hat{e}_t}{d\theta} \frac{d\theta}{dt} \quad (\text{chain rule})$$

Also note that: $\theta = f(s(t))$:

$$\vec{a} = \dot{v} \hat{e}_t + \vec{v} \frac{d\hat{e}_t}{d\theta} \frac{d\theta}{ds} \frac{ds}{dt} = \dot{v} \hat{e}_t + v^2 \frac{d\hat{e}_t}{d\theta} \frac{ds}{dt}$$



2. Path Kinematics

We define:

$$\hat{e}_n = \frac{d\hat{e}_t}{d\theta} = \frac{d}{d\theta} (\cos \theta \hat{i} + \sin \theta \hat{j})$$

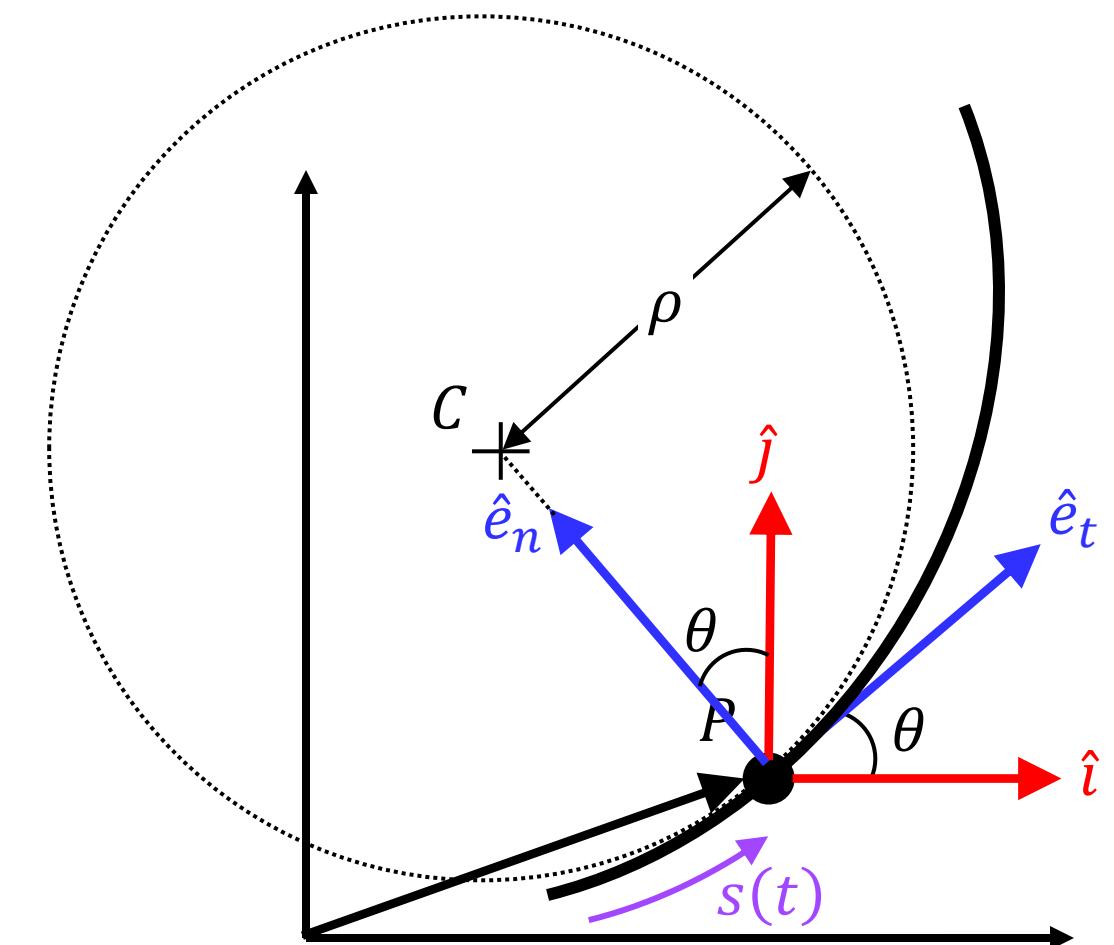
$$\hat{e}_n = -\sin \theta \hat{i} + \cos \theta \hat{j}$$

From the arc length formula:

$$ds = \rho d\theta$$

So:

$$\frac{d\theta}{ds} = \frac{1}{\rho}$$



NOTE: see the lecture book for the derivation in the case where

$$\hat{e}_n = -d\hat{e}_t/d\theta$$

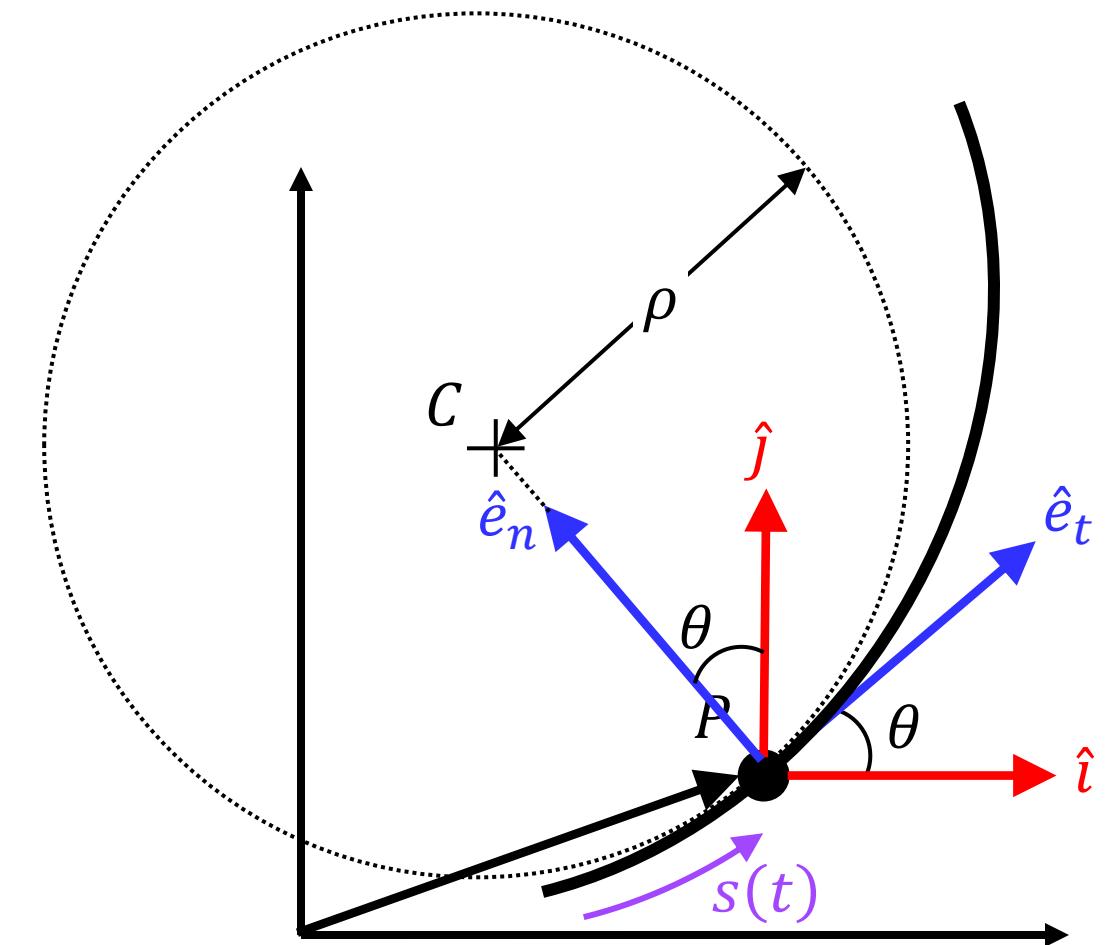
2. Path Kinematics

Finally:

$$\vec{a} = \dot{v}\hat{e}_t + v^2 \frac{d\hat{e}_t}{d\theta} \frac{d\theta}{ds}$$

$$\vec{a} = \dot{v}\hat{e}_t + v^2 \hat{e}_n \cdot \frac{1}{\rho}$$

$$\vec{a} = \dot{v}\hat{e}_t + \frac{v^2}{\rho} \hat{e}_n$$



2. Path Kinematics

For the path description we have:

$$\vec{v} = v \hat{e}_t$$

$$\vec{a} = \dot{v} \hat{e}_t + \frac{v^2}{\rho} \hat{e}_n$$

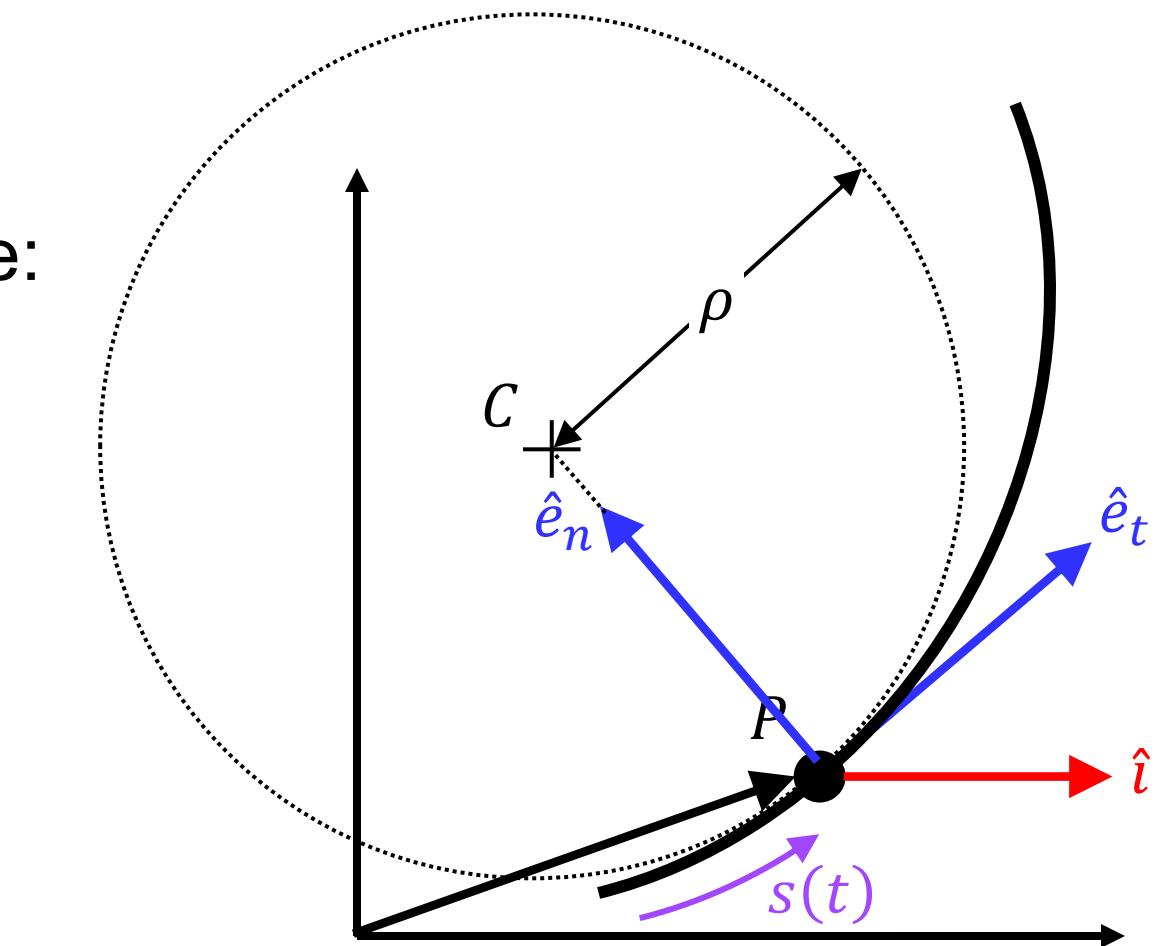
v : speed (how fast?)

ρ : radius of curvature of the path

\hat{e}_t : **unit vector tangent** to the path

\hat{e}_n : **unit vector normal** to the path

(ALWAYS pointing **inward** to the path!)



2. Path Kinematics

$$\vec{v} = v \hat{e}_t$$

$$\vec{a} = \dot{v} \hat{e}_t + \frac{v^2}{\rho} \hat{e}_n$$

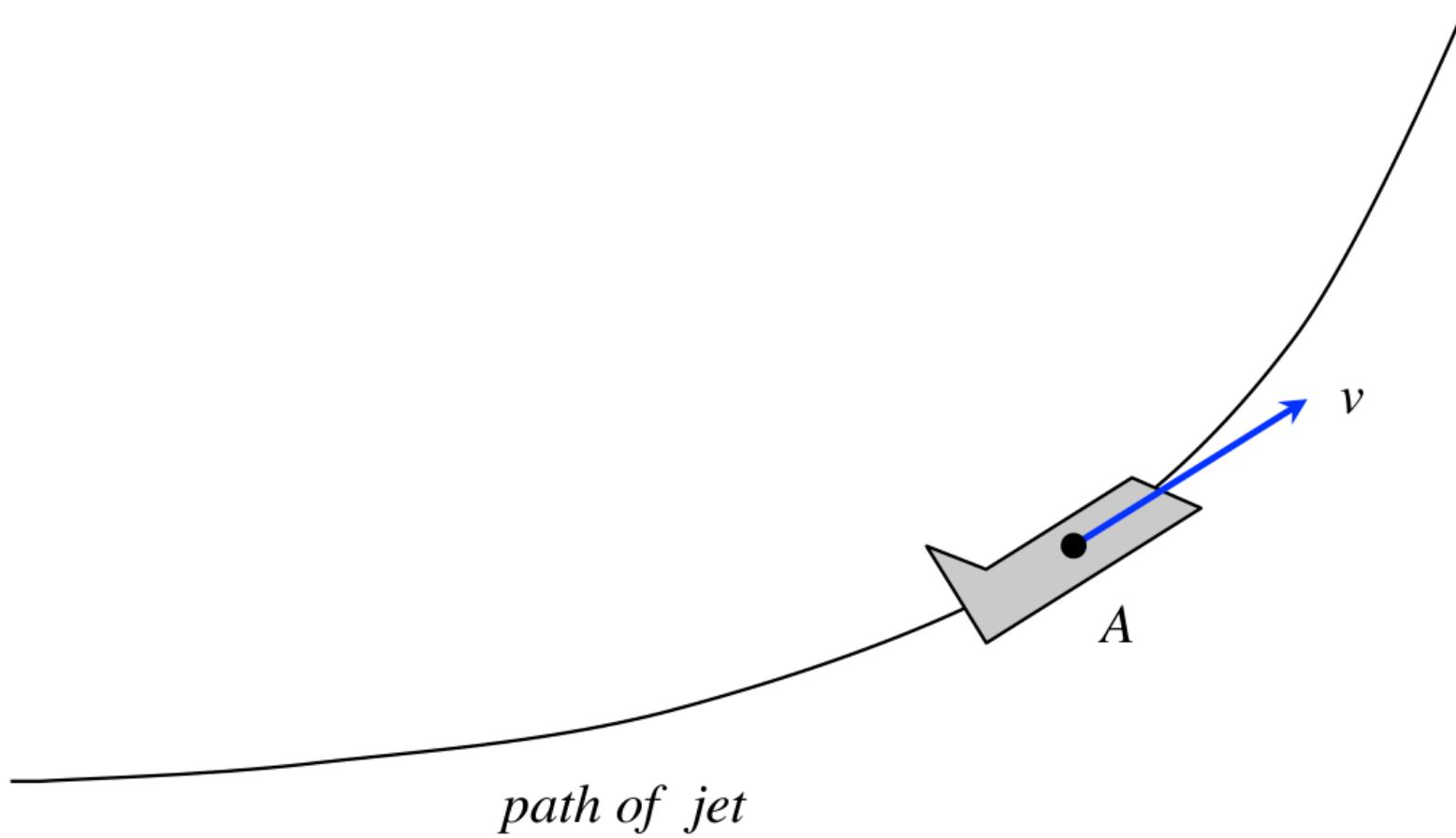
NOTE: Do not confuse \dot{v} (rate of change of speed) with $|\vec{a}|$ (magnitude of acceleration)!

$$|\vec{a}| = \sqrt{\dot{v}^2 + \left(\frac{v^2}{\rho}\right)^2}$$

Example 1.A.3

Given: A jet is flying on the path shown below with a speed of v . At position A on the loop, the speed of the jet is $v = 600 \text{ km/hr}$, the magnitude of the acceleration is $2.5g$ and the tangential component of acceleration is $a_t = 5 \text{ m/s}^2$.

Find: The radius of curvature of the path of the jet at A.

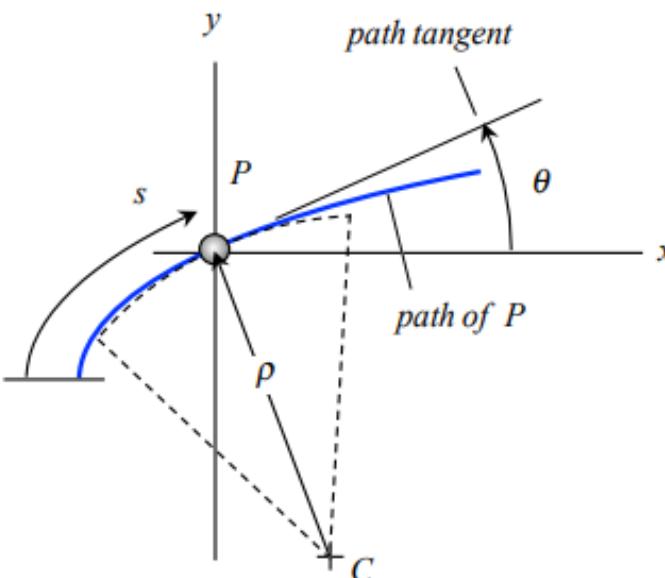


Additional lecture Example 1.2

Given: Particle P moves along a path with its position on the path given by the arc length of s . The speed of P is given as a function of s as: $v_P = bs^2$, where s is given in meters and v_P in terms of meters/second. The radius of curvature of the path is given by ρ and the path tangent is at an angle of θ with respect to the direction of the x -axis.

Find: At the position of P where $s = 3$ m:

- Make a sketch of the path unit vectors \hat{e}_t and \hat{e}_n .
- Determine the velocity and acceleration of P in terms of path unit vectors \hat{e}_t and \hat{e}_n .
- Determine the velocity and acceleration of P in terms of Cartesian unit vectors \hat{i} and \hat{j} .
- Determine the xy -components of location of the center of curvature, C, for the path.



Use the following parameters in your work: $b = 0.5/\text{m}\cdot\text{s}$, $\rho = 5$ m and $\theta = 30^\circ$.

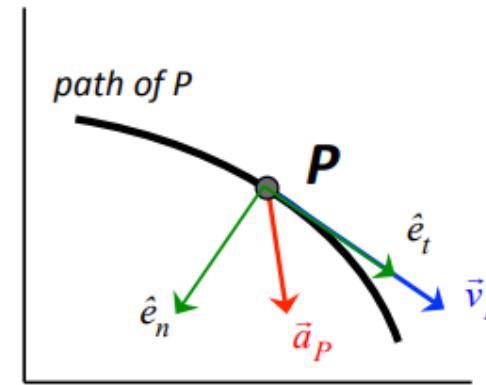
Summary: Particle Kinematics – Path Description

1. **PROBLEM:** Motion of a point described in path variables.

2. **FUNDAMENTAL EQUATIONS:**

$$\vec{v}_P = v_P \hat{e}_t = \text{velocity of } P$$

$$\vec{a}_P = \dot{v}_P \hat{e}_t + \frac{v_P^2}{\rho} \hat{e}_n = \text{acceleration of } P$$



where \hat{e}_t and \hat{e}_n are unit vectors tangent and (inwardly) normal to the path.

3. **OBSERVATIONS:** *In regard to the path description kinematics, we see*

- Velocity is **ALWAYS** tangent to the path.
- Acceleration, in general, has **BOTH** normal and tangential components.
- Note that acceleration depends on three factors: speed v_P , rate of change of speed \dot{v}_P and radius of curvature of the path ρ .
- Rate of change of speed is the projection of acceleration onto the unit tangent vector: $\dot{v}_P = \vec{a}_P \cdot \hat{e}_t$
- Rate of change of speed is **NOT** equal to the magnitude of acceleration:

$$|\vec{a}_P| = \sqrt{\dot{v}_P^2 + \left(v_P^2 / \rho\right)^2} \neq |\dot{v}_P|$$

ME 274: Basic Mechanics II

Week 1 – Friday, January 16

Particle kinematics: Polar description

Instructor: Manuel Salmerón

Attendance!

- Log in with your Purdue email (NOT Gmail)
- You have 30 seconds to answer each question
- The questions will only appear in the slides

Access:

Question 1

Speed is a...

- a) ...vector, \hat{v} , denoting the direction of the velocity
- b) ...scalar, v , denoting the magnitude of the velocity
- c) ...vector, \vec{v} , denoting the velocity of the particle
- d) ...scalar, \dot{v} , denoting the rate of change of speed

Question 2

The velocity, \vec{v} , is always _____ to the path

- a) normal
- b) pointing
- c) tangent
- d) parallel

Question 3

\hat{e}_n is the _____ component of acceleration

- a) tangent
- b) only
- c) x
- d) normal

Question 4

\hat{e}_n is always...

- a) ...directed outward to the path
- b) ...directed inward to the path
- c) ...tangent to the path
- d) ...parallel to the path

Correct answers

Q1: b) Speed is a scalar, ν , denoting the magnitude of the velocity

Q2: c) The velocity, \vec{v} , is always tangent to the path

Q3: d) \hat{e}_n is the normal component of acceleration

Q4: b) \hat{e}_n is always directed inward to the path

Today's Agenda

1. Recap: path coordinates
2. Path coordinates example
3. Polar coordinates
4. Example
5. Summary

1. Recap: Path Coordinates

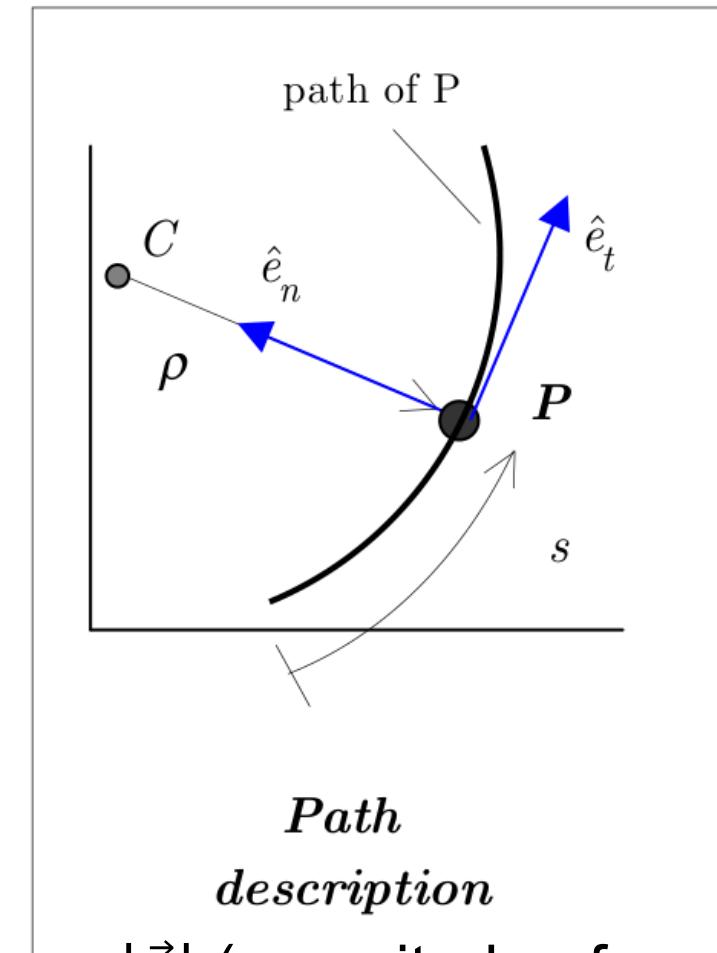
Kinematic Equations for Path Coordinates:

$$\vec{v}(t) = v \hat{e}_t$$

$$\vec{a}(t) = \dot{v} \hat{e}_t + \frac{v^2}{\rho} \hat{e}_n$$

To keep in mind:

- v is a scalar (speed), \vec{v} is a vector (velocity)
- \vec{v} is always tangent to the path
- $\dot{v} = ds/dt$ (rate of change of speed) is NOT the same as $|\vec{a}|$ (magnitude of acceleration)
- \dot{v} is the (scalar) projection of \vec{a} onto \hat{e}_t : $\dot{v} = \vec{a} \cdot \hat{e}_t$
- \hat{e}_n is always directed inward to the path

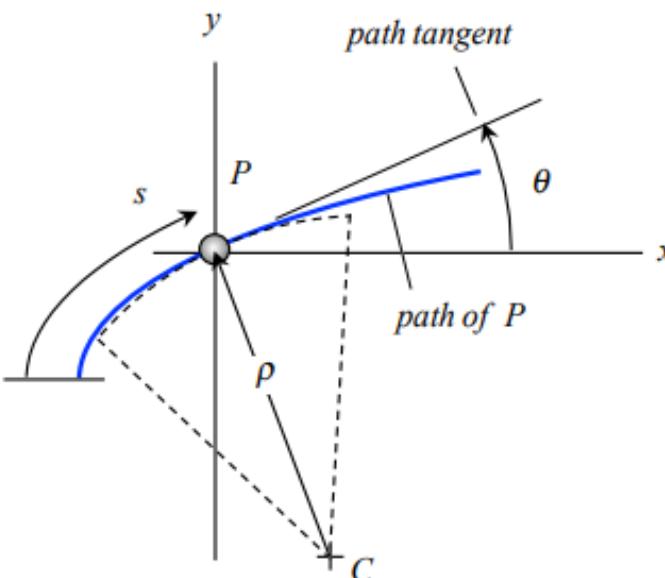


Additional lecture Example 1.2

Given: Particle P moves along a path with its position on the path given by the arc length of s . The speed of P is given as a function of s as: $v_P = bs^2$, where s is given in meters and v_P in terms of meters/second. The radius of curvature of the path is given by ρ and the path tangent is at an angle of θ with respect to the direction of the x -axis.

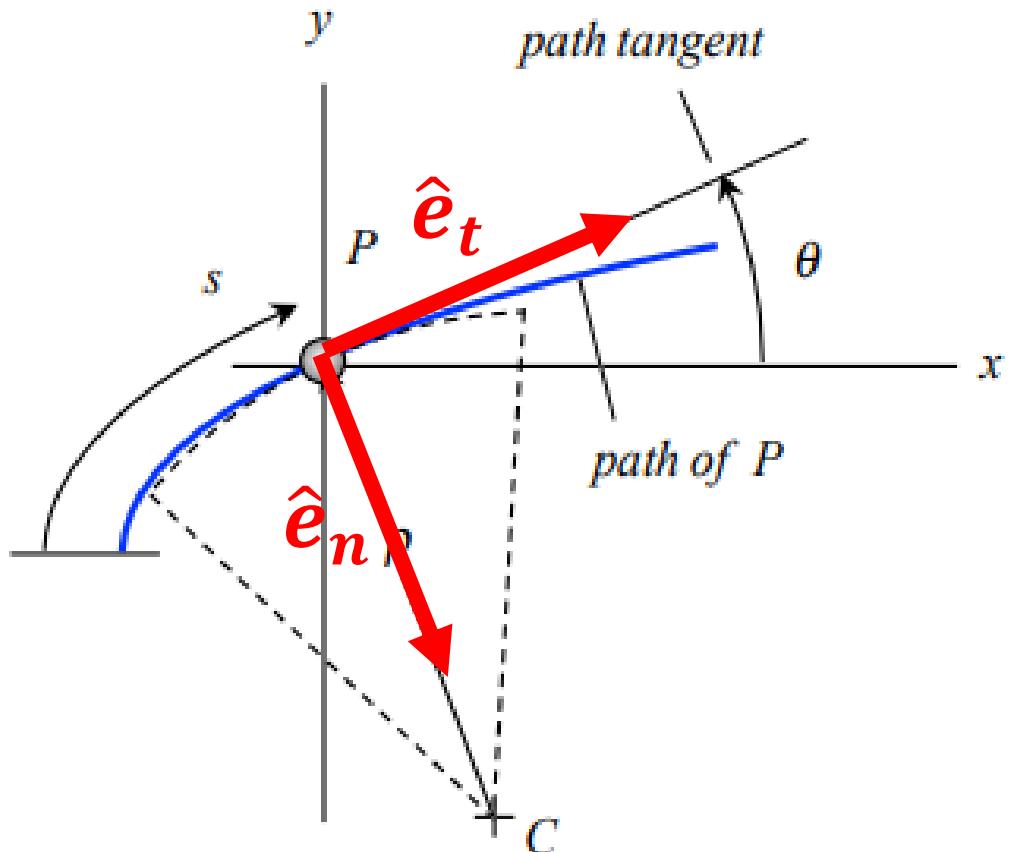
Find: At the position of P where $s = 3$ m:

- Make a sketch of the path unit vectors \hat{e}_t and \hat{e}_n .
- Determine the velocity and acceleration of P in terms of path unit vectors \hat{e}_t and \hat{e}_n .
- Determine the velocity and acceleration of P in terms of Cartesian unit vectors \hat{i} and \hat{j} .
- Determine the xy -components of location of the center of curvature, C, for the path.



Use the following parameters in your work: $b = 0.5/\text{m}\cdot\text{s}$, $\rho = 5$ m and $\theta = 30^\circ$.

2. Additional Lecture Example 1.2



(b) Get \vec{v} and \vec{a} :

Write the fundamental equations:

$$\vec{v} = v \hat{e}_t$$

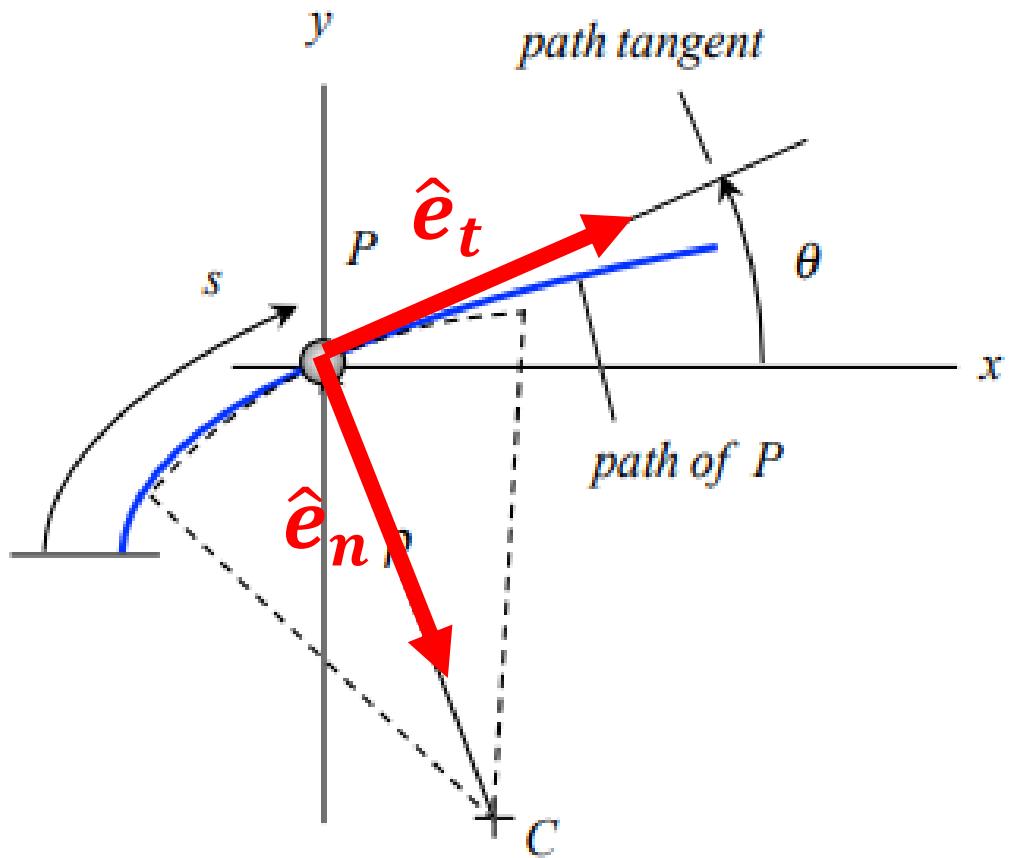
$$\vec{a} = \dot{v} \hat{e}_t + \frac{v^2}{\rho} \hat{e}_n$$

Do we have everything we need? If not, what are we missing?

$$v = v_P = bs^2 \text{ (given)}$$

$$\dot{v} = \dot{v}_P = \frac{dv}{ds} \frac{ds}{dt} = 2bsv = 2b^2s^3$$

2. Additional Lecture Example 1.2



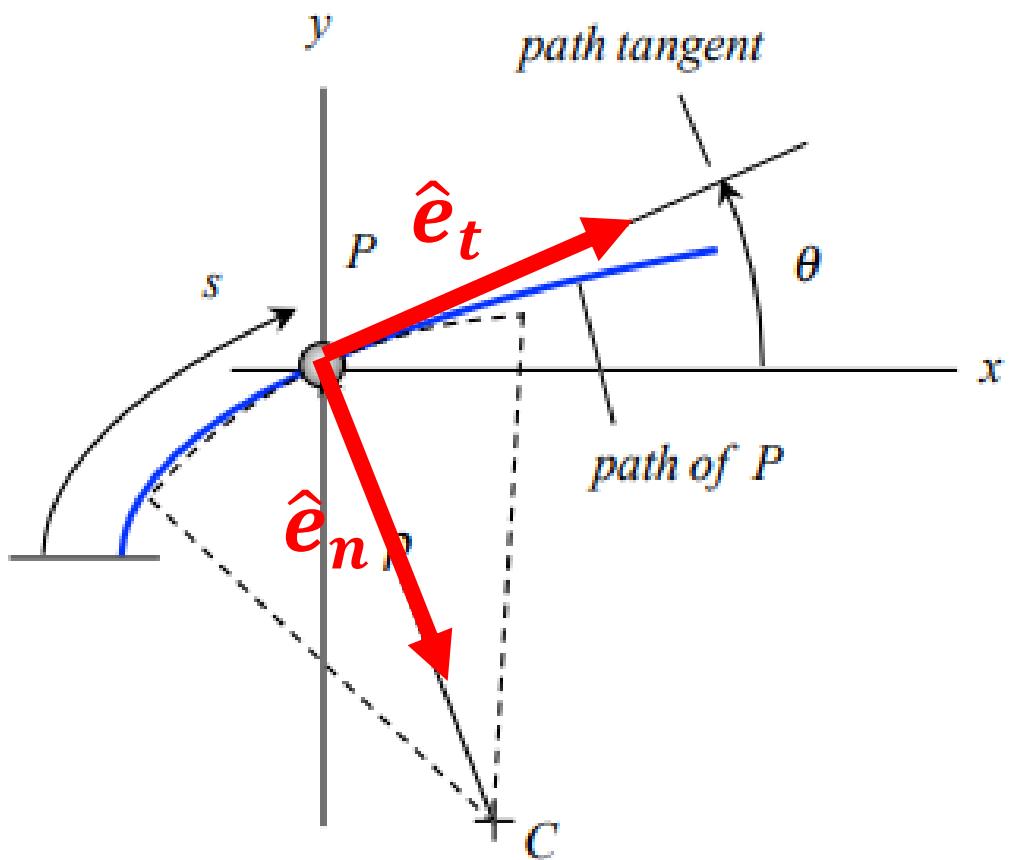
(b) Get \vec{v} and \vec{a} :

Plug in values:

$$\vec{v} = 4.5\hat{e}_t \text{ m/s}$$

$$\vec{a} = 13.5\hat{e}_t + 4.05\hat{e}_n \text{ m/s}^2$$

2. Additional Lecture Example 1.2



(c) Get \vec{v} and \vec{a} in Cartesian coordinates

From figure:

$$\hat{e}_t = \cos \theta \hat{i} + \sin \theta \hat{j}$$

$$\hat{e}_n = \sin \theta \hat{i} - \cos \theta \hat{j}$$

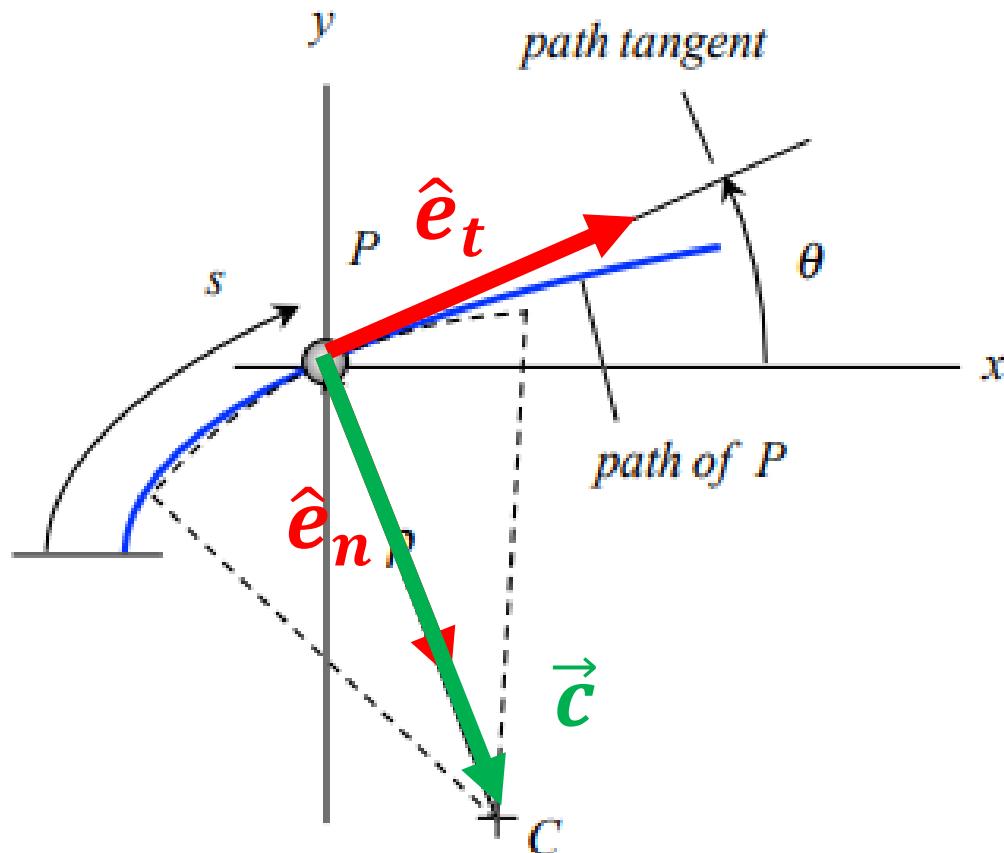
Substitute \hat{e}_t and \hat{e}_n into \vec{v} and \vec{a} :

$$\vec{v} = 4.5(\cos \theta \hat{i} + \sin \theta \hat{j})$$

$$\vec{a} = 13.5(\cos \theta \hat{i} + \sin \theta \hat{j}) + 4.05(\sin \theta \hat{i} - \cos \theta \hat{j})$$

Then, plug in θ and you're done!

2. Additional Lecture Example 1.2



(c) xy -components of C

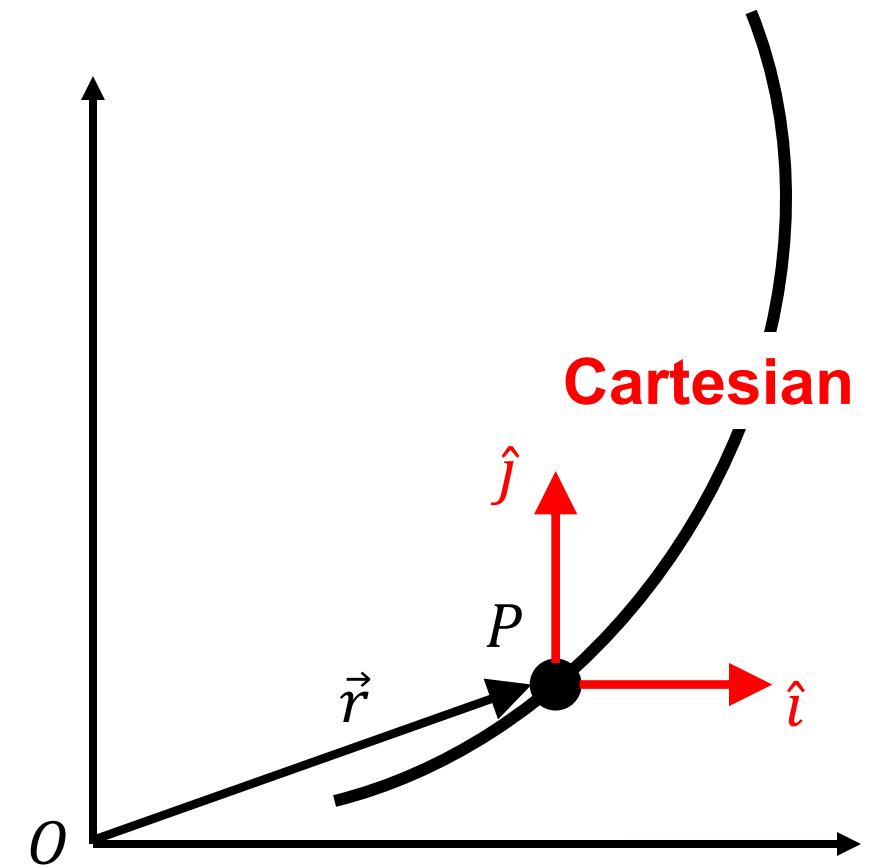
Remember: \hat{e}_n is ALWAYS directed inward to the path (see figure)

Thus, the position vector of C is:

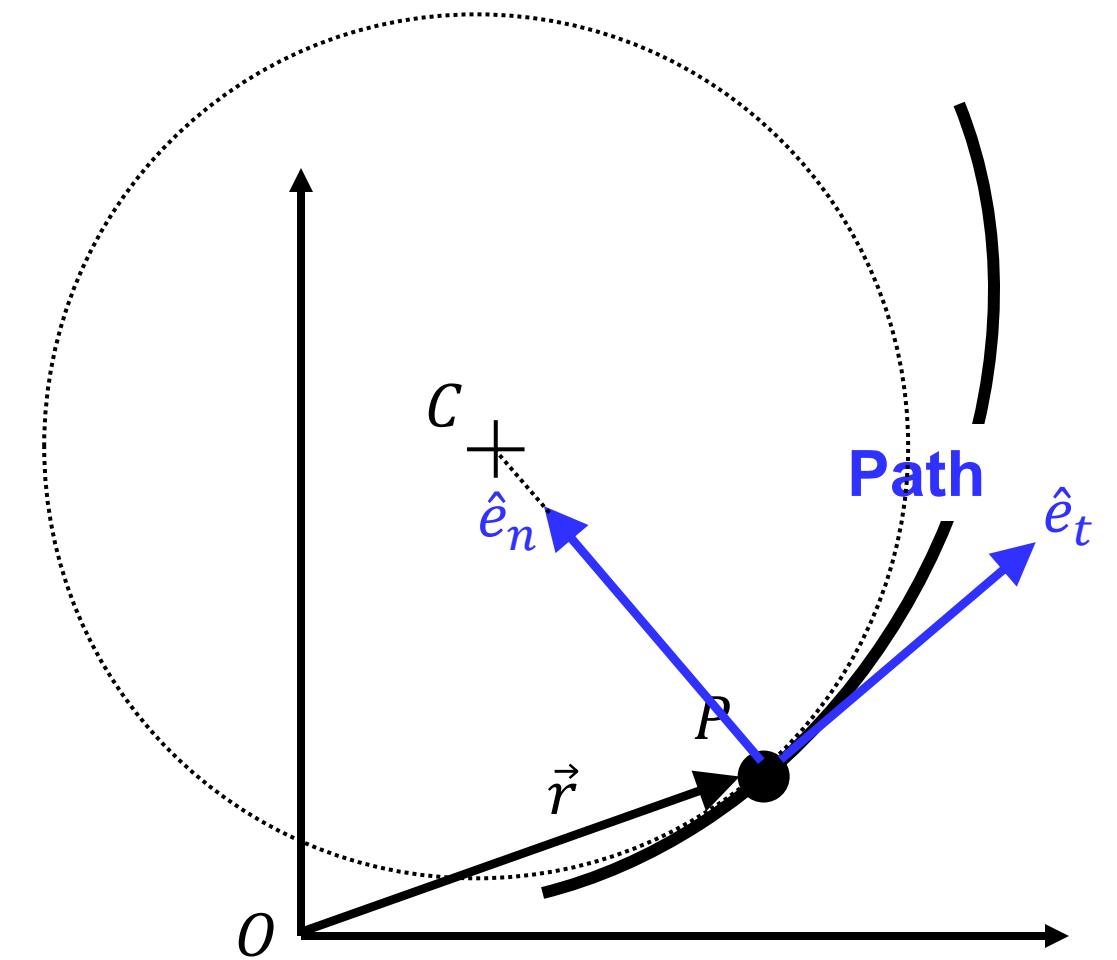
$$\vec{c} = \rho \hat{e}_n$$

$$\vec{c} = 5(\sin 30^\circ \hat{i} - \cos 30^\circ \hat{j})$$

3. Polar Coordinates

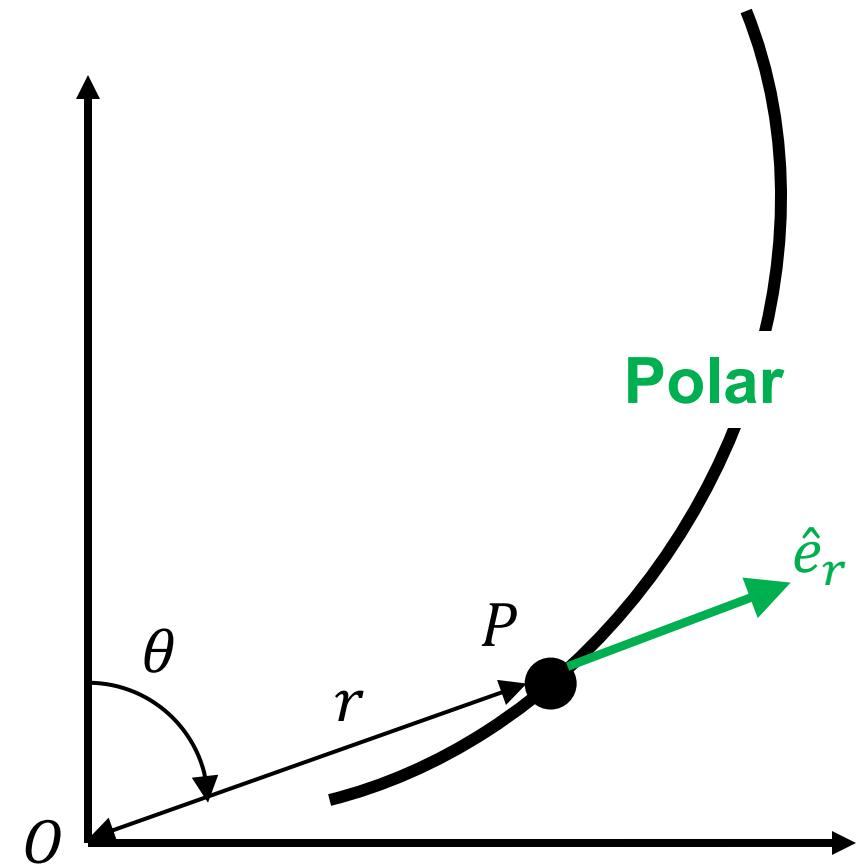


3. Polar Coordinates



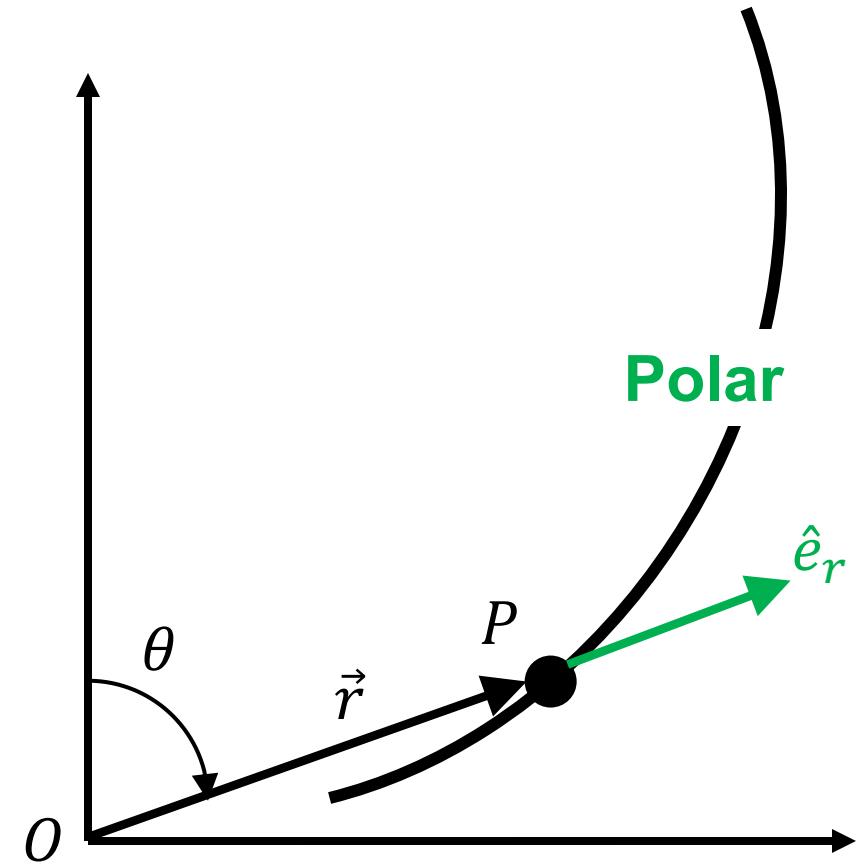
3. Polar Coordinates

Position:



3. Polar Coordinates

Position: $\vec{r}(t) = r\hat{e}_r$



3. Polar Coordinates

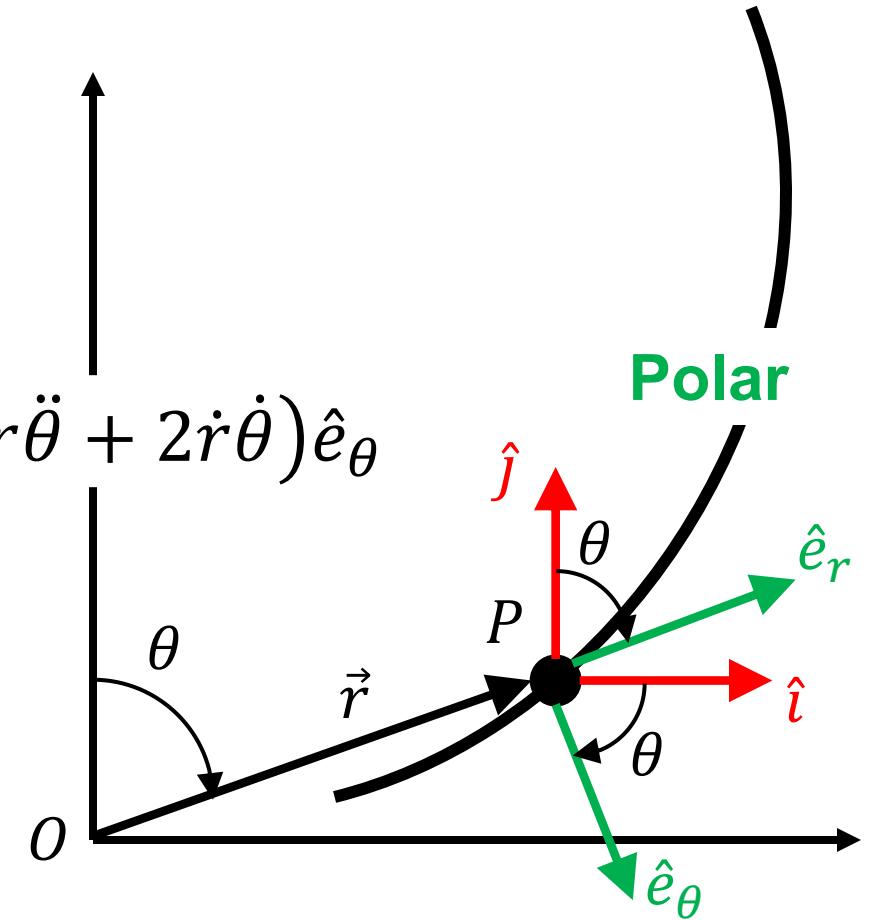
Position: $\vec{r}(t) = r\hat{e}_r$

Velocity: $\vec{v}(t) = \dot{r}\hat{e}_r + r\dot{\theta}\hat{e}_\theta$

Acceleration: $\vec{a}(t) = (\ddot{r} - r\dot{\theta}^2)\hat{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{e}_\theta$

NOTES:

- θ depends on O : choose wisely, be consistent
- If $r = r(\theta)$, use chain rule to get \dot{r} and \ddot{r}



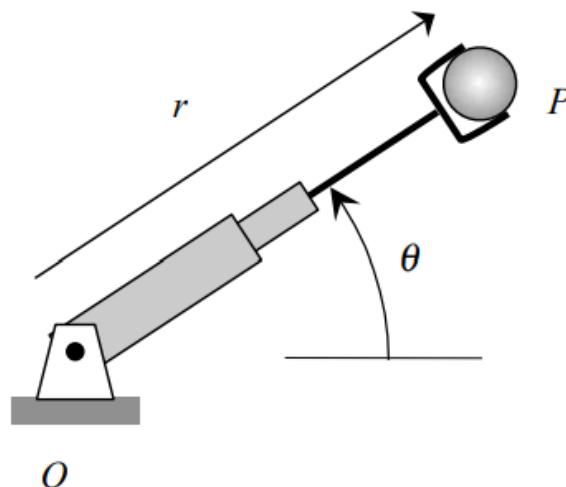
4. Additional Lecture Example 1.4

Given: A rotating and telescoping robotic arm is gripping a small sphere P in its end effector. The arm is rotating counterclockwise with a constant angular speed of $\dot{\theta}$. The arm is extending such that the radial distance from O to P is related to the rotation angle θ by the following equation:

$$r(\theta) = R_0 + R_1 \cos 2\theta$$

where r and θ are given in terms of meters and radians, respectively.

Find: Determine the velocity and acceleration of the sphere P. Write your answers as vectors in terms of the polar unit vectors \hat{e}_r and \hat{e}_θ .



Use the following parameters in your analysis: $R_0 = 2$ m, $R_1 = 0.5$ m, $\theta = \pi/2$ rad and $\dot{\theta} = 2$ rad/s.

Solution:

We need \vec{v} and \vec{a} :

$$\vec{v}(t) = \dot{r}\hat{e}_r + r\dot{\theta}\hat{e}_\theta$$

$$\vec{a}(t) = (\ddot{r} - r\dot{\theta}^2)\hat{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{e}_\theta$$

What do we have? What are we missing?

\dot{r} = need!

r = given!

$\dot{\theta}$ = given!

\ddot{r} = need!

$\ddot{\theta} = 0$