

Problem H1.G

Given: Particle P moves along a hyperbolic path described in Cartesian coordinates as: $xy = b$, where x and y are given in feet. It is known that P moves in such a way that $\dot{x} = c = \text{constant}$.

Find: For the position of $x = 2$ ft:

- (a) determine the velocity and acceleration of P. Write your answers as vectors in terms of their Cartesian components.
- (b) determine the Cartesian components of the unit path vector \hat{e}_t .
- (c) show the position of P and the path unit vectors \hat{e}_t and \hat{e}_n , along with \vec{v}_P and \vec{a}_P , in a sketch.
- (d) determine numerical values for the rate of change of speed \dot{v}_P of P and the radius of curvature ρ_P for the path of P.
- (e) is the speed of P increasing or decreasing? Explain.

Use the following parameters in your analysis: $b = 6 \text{ ft}^2$ and $c = 30 \text{ ft/s}$.