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Example 2.A.1

Given: The disk shown is rotating at a non-constant rate of {2 about a fixed axis passing through
its center O. At a particular instant, the acceleration vector of point P on the disk is ap.

a

Find: Determine: Q \/(\ A/ N VA

(a) The angular velocity of the disk at this instant; and —2 4 f /3
(b) The angular acceleration of the disk at this instant. ~—

Use the following parameters in your analysis: @p = 3i +4j m/ s2 and r = 0.4 m. Also, be sure to
write your answers as vectors.
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