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Example 1.A.1

Given: Pin P is constrained to move along a elliptical ring whose shape is given by 22 / a’+y? / b2 =1
(where x and y are given in mm). The pin is also constrained to move within a horizontal slot that
is moving upward at a constant speed of v.
Find: Determine:

(a) The velocity of pin P at the position corresponding to y = 6 mm; and

(b) The acceleration of pin P at the position corresponding to y = 6 mm.

Use the following parameters in your analysis: a = 5 mm, b = 10 mm, v = 30 mm/s.
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Example 1.A.2

Given: A particle P moves on a path whose Cartesian components are given by the following
functions of time (where both components are given in inches and time ¢ is given in seconds):

z(t) =3 + 10
y(t) = 2 cos 4t

Find: Determine at the time t = 2 s:
(a) The velocity vector of P;
(b) The acceleration of P; and
(c) The angle between the velocity and acceleration vectors of P.
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Example 1.A.3

Given: A jet is flying on the path shown below with a speed of v. At position A on the loop,
the speed of the jet is v = 600 km/hr, the magnitude of the acceleration is 2.5g and the tangential
component of acceleration is a; = 5 m/s%.

Find: The radius of curvature of the path of the jet at A.
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