

ME 274: Basic Mechanics II

Lecture 5: Planar kinematics: rigid bodies

Announcements

Homework changes due to snow cancelations:

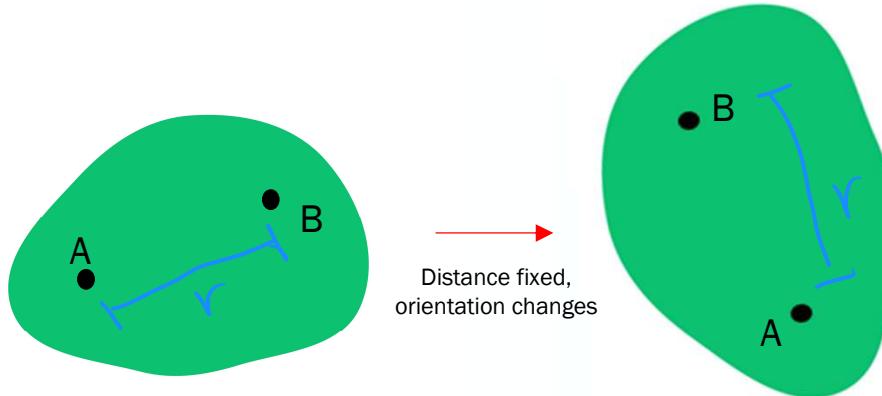
HW 2.B, 2.C, 2.D due on Friday

HW 2.A canceled

HW 1.I and 1.J still due tonight

What are rigid bodies?

Any object for which the distance between any two points on the object remains fixed regardless of the motion of the object



Point kinematics → we treat the object as a particle $\rightarrow \vec{r}, \vec{v}, \vec{a}$

Rigid body kinematics → we care about the **position, geometry, and orientation** of the object

If we know the **motion of one point** and the **rotation of the body**, we can determine the **motion of every point on the body**

Kinematic Equations for Planar Rigid Body Motion

- Position of point B with respect to point A found using relative position expression

$$\vec{r}_{B/A} = \vec{r}_B - \vec{r}_A$$

Using the polar description of $\vec{r}_{B/A}$:

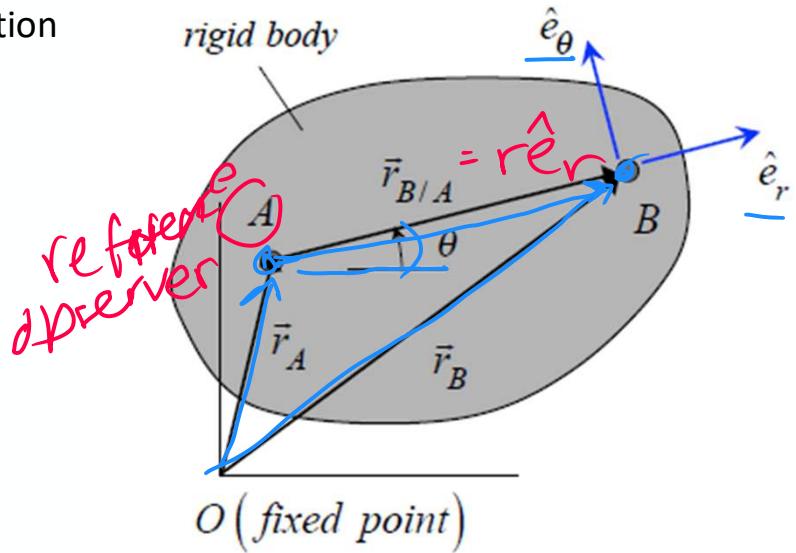
- Fixed points $\rightarrow |\vec{r}_{B/A}| = r = \text{const.}, \dot{r}_{B/A} = 0$
- Changing $\theta \rightarrow \vec{r}_{B/A} \neq \text{const.}$

$$\vec{r}_{B/A} = \vec{r}_B - \vec{r}_A = r \hat{e}_r$$

Take time derivatives for velocity and acceleration:

$$\vec{v}_{B/A} = \vec{v}_B - \vec{v}_A = \dot{r} \hat{e}_r + r \dot{\theta} \hat{e}_\theta$$

$$\vec{a}_{B/A} = \vec{a}_B - \vec{a}_A = (\ddot{r} - r \dot{\theta}^2) \hat{e}_r + (r \ddot{\theta} + 2r\dot{\theta}) \hat{e}_\theta$$



Deriving the Rigid Body Velocity Equation

We can derive a description agnostic expression by writing in terms of vector operations

$$\vec{v}_{B/A} = \dot{r}\hat{e}_r + r\dot{\theta}\hat{e}_\theta = \vec{v}_B - \vec{v}_A \leftarrow \text{specific to polar coordinates}$$

$$\begin{aligned}\vec{v}_{B/A} &= \vec{v}_B - \vec{v}_A \quad \text{relative} \\ &= \dot{r}\hat{e}_r + r\dot{\theta}\hat{e}_\theta \quad \text{polar} \\ &= r\dot{\theta}\hat{e}_\theta \\ &= r\dot{\theta}(\hat{k} \times \hat{e}_r)\end{aligned}$$

$$\begin{aligned}\text{scalar} &= (\dot{\theta}\hat{k}) \times (r\hat{e}_r) \\ \boxed{\vec{v}_{B/A}} &= \vec{\omega} \times \vec{r}_{B/A}\end{aligned}$$

where $\vec{\omega} = \dot{\theta}\hat{k}$ is the “angular velocity” of the rigid body.

we know $|\vec{r}_{B/A}| = r = \text{const}$
 $\dot{r} = 0$

$$\hat{e}_\theta = \hat{k} \times \hat{e}_r$$

$\hat{e}_r \rightarrow$ relative position vector $\vec{r}_{B/A}$

$$\hat{\omega} = \vec{\omega}$$

Deriving the Rigid Body Acceleration Equation

We can derive a description agnostic expression by writing in terms of vector operations

$$\vec{a}_{B/A} = (\ddot{r} - r\dot{\theta}^2)\hat{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{e}_\theta = \vec{a}_B - \vec{a}_A \quad \text{← specific to polar coordinates}$$

$$|\vec{v}_{B/A}| = r = \text{const} \rightarrow \dot{r} = 0 = \ddot{r}$$

$$\begin{aligned} \vec{a}_{B/A} &= \vec{a}_B - \vec{a}_A \quad \text{← relative} \\ &= (\ddot{r} - r\dot{\theta}^2)\hat{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{e}_\theta \quad \text{← polar} \\ \vec{a}_{B/A} &= (-r\dot{\theta}^2)\hat{e}_r + (r\ddot{\theta})\hat{e}_\theta \quad \rightarrow \text{in terms of } \hat{k} \\ &= (r\dot{\theta}^2)[\hat{k} \times (\hat{k} \times \hat{e}_r)] + (r\ddot{\theta})(\hat{k} \times \hat{e}_r) \\ &= \dot{\theta}\hat{k} \times [(\dot{\theta}\hat{k}) \times (r\hat{e}_r)] + (\ddot{\theta}\hat{k}) \times (r\hat{e}_r) \\ &= \vec{\omega} \times [\vec{\omega} \times \vec{r}_{B/A}] + \vec{\alpha} \times \vec{r}_{B/A} \end{aligned}$$

$$\begin{aligned} \hat{e}_\theta &= \hat{k} \times \hat{e}_r \\ \hat{e}_r &= -\hat{k} \times (\hat{k} \times \hat{e}_r) \end{aligned}$$

where $\vec{\alpha} = \theta\hat{k}$ is the “angular acceleration” of the rigid body.

To find the velocity/acceleration of point B

$$\begin{aligned} \vec{v}_B &= \vec{v}_A + \vec{\omega} \times \vec{r}_{B/A} \\ \vec{a}_B &= \vec{a}_A + \vec{\omega} \times [\vec{\omega} \times \vec{r}_{B/A}] + \vec{\alpha} \times \vec{r}_{B/A} \end{aligned}$$

translational

rotation

$$\vec{\alpha}_{B/A} = \vec{\omega} \times (\vec{\omega} \times \vec{r}_{B/A}) + \vec{\alpha} \times \vec{r}_{B/A} \leftarrow 3D$$
$$- \omega^2 \vec{r}_{B/A}$$

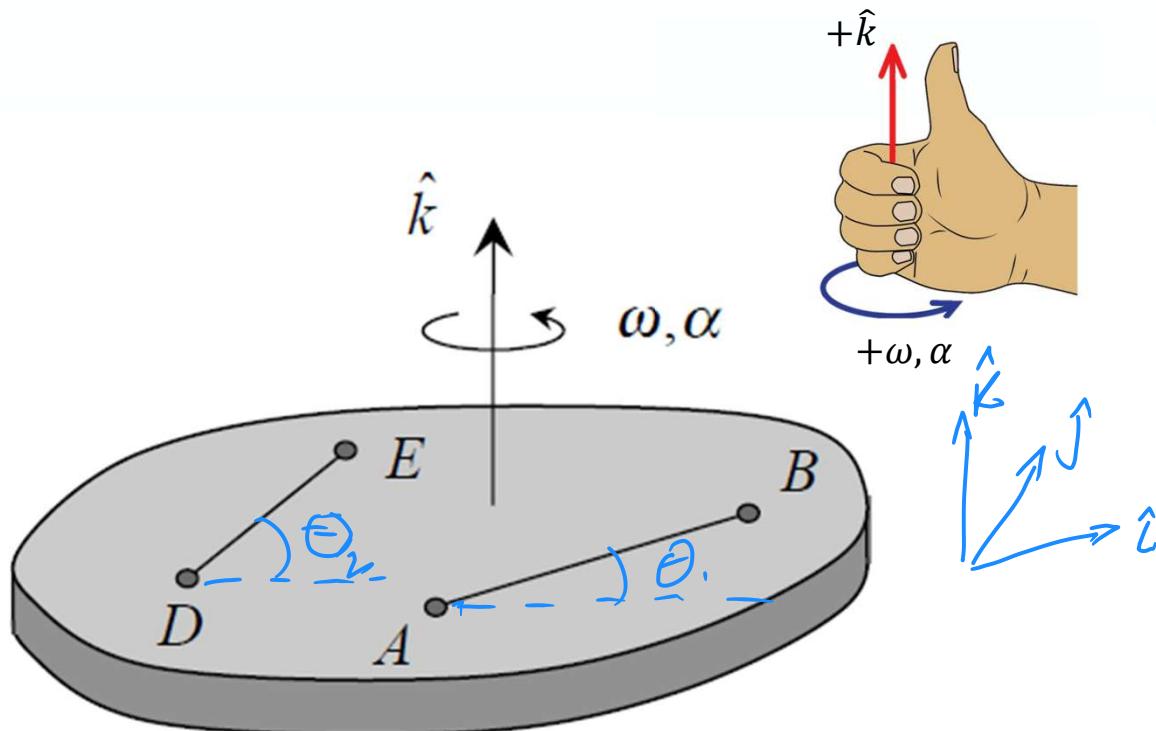
$$2D \quad \vec{\alpha}_{B/A} = -\omega^2 \vec{r}_{B/A} + \vec{\alpha} \times \vec{r}_{B/A}$$

Angular Velocity and Acceleration

Angular velocity: $\vec{\omega} = \underline{\omega} \hat{k} = \dot{\theta} \hat{k}$

Describe the motion of the **BODY** and is the same for any set of points – i.e. a rigid body will only have one angular velocity and acceleration

Angular acceleration: $\vec{\alpha} = \underline{\alpha} \hat{k} = \ddot{\theta} \hat{k}$



The direction \hat{k} denotes the axis the body rotates around. The sign denotes the direction (ex. Clockwise, ccw)

$$\theta_2 = \theta_1 + \text{const}$$

$$\dot{\theta}_2 = \dot{\theta}_1 + \omega = \omega$$

$$\ddot{\theta}_2 = \ddot{\theta}_1 = \alpha$$

Example 2.A.1

Given: The disk shown is rotating at a non-constant rate of Ω about a fixed axis passing through its center O. At a particular instant, the acceleration vector of point P on the disk is \vec{a}_P .

Find: Determine:

- The angular velocity of the disk at this instant; and
- The angular acceleration of the disk at this instant.

Use the following parameters in your analysis: $\vec{a}_P = 3\hat{i} + 4\hat{j}$ m/s² and $r = 0.4$ m. Also, be sure to write your answers as vectors.

$$\vec{a}_P = \vec{a}_O + \vec{\alpha} \times \vec{r}_{P/O} - (\vec{\omega}^2 \vec{r}_{P/O})$$

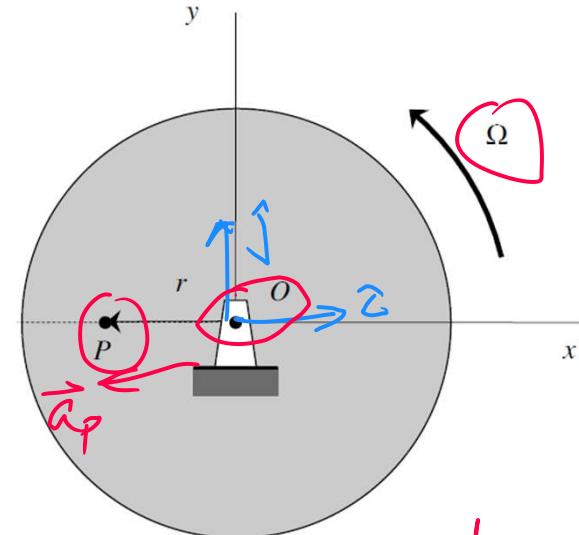
$$\begin{aligned} a_{Px}\hat{i} + a_{Py}\hat{j} &= 0 + \times \hat{k} \times -r\hat{i} - \omega^2(-r\hat{i}) \\ &= -\alpha r\hat{j} + \omega^2 r\hat{i} \end{aligned}$$

$$\text{z: } a_{Px} = \omega^2 r \rightarrow \omega = \pm \sqrt{\frac{a_{Px}}{r}} = \pm \sqrt{\frac{3}{0.4}} = \pm 2.74 \text{ rad/s}$$

$$\vec{\omega} = \pm 2.74 \frac{\text{rad}}{\text{s}} \hat{k}$$

$$\text{j: } a_{Py} = -\alpha r \rightarrow \alpha = -\frac{a_{Py}}{r} = -\frac{4}{0.4} = -10 \text{ rad/s}^2$$

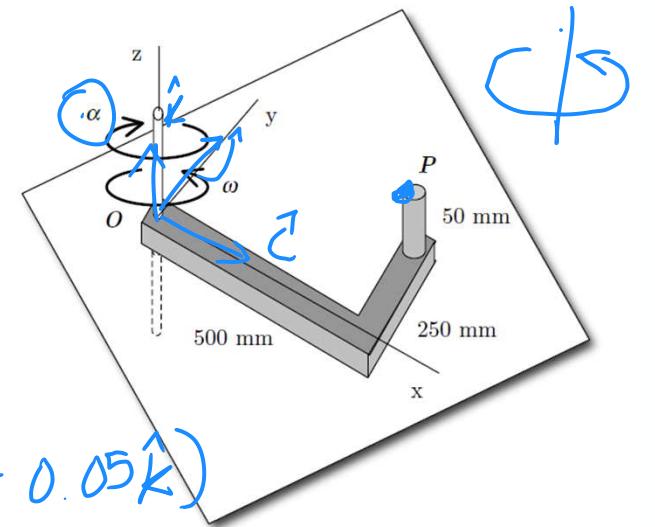
$$\vec{\alpha} = -10 \hat{k} \text{ rad/s}^2$$



$$\text{O} \rightarrow \text{pinned} \\ \vec{v}_O = 0 \quad \vec{a}_O = 0$$

Example 2.A.3

Given: The system shown below rotates about a vertical shaft at point O, such that $\omega = 2 \text{ rad/s}$ and $\alpha = 3 \text{ rad/s}^2$.



Find: Determine:

- (a) The velocity of point P; and
- (b) The acceleration of point P.

$$\vec{V}_P = \vec{V}_O + \vec{\omega} \times \vec{r}_{P/O}$$

$$= \vec{\omega} \times \vec{r}_{P/O} = \omega \hat{k} \times (0.5\hat{i} + 0.25\hat{j} + 0.05\hat{k})$$

$$\vec{V}_P = 0.5\omega\hat{j} - 0.25\omega\hat{i} \\ 0.5(2)\hat{j} - 0.25(2)\hat{i} = \boxed{1\hat{j} - 0.5\hat{i} \text{ m/s}}$$

$$\vec{a}_P = \vec{a}_O + \vec{\alpha} \times \vec{r}_{P/O} + \vec{\omega} \times (\vec{\omega} \times \vec{r}_{P/O})$$

$$= \vec{\alpha} \hat{k} \times (0.5\hat{i} + 0.25\hat{j} + 0.05\hat{k}) \\ + \omega \hat{k} \times [\omega \hat{k} \times (0.5\hat{i} + 0.25\hat{j} + 0.05\hat{k})] \\ + \omega \hat{k} \times (0.5\omega\hat{j} - 0.25\omega\hat{i}) \\ = 0.5\alpha\hat{j} - 0.25\alpha\hat{i} + \omega \hat{k} \times (0.5\omega\hat{j} - 0.25\omega\hat{i}) \\ \rightarrow 0.5\omega^2\hat{i} - 0.25\omega^2\hat{j}$$

$$\vec{a}_P = (-0.25\alpha - 5\omega^2)\hat{i} + (0.5\alpha - 0.25\omega^2)\hat{j}$$

→ plug in + solve

Summary: Rigid Body Kinematics 1

PROBLEM: Two points A and B on the same rigid body undergoing planar motion.

$$\vec{v}_B = \vec{v}_A + \vec{\omega} \times \vec{r}_{B/A}$$

$$\vec{a}_B = \vec{a}_A + \vec{\alpha} \times \vec{r}_{B/A} + \vec{\omega} \times (\vec{\omega} \times \vec{r}_{B/A})$$



COMMENTS:

- $\vec{\omega}$ and $\vec{\alpha}$ are the angular velocity and angular acceleration vectors of the body. These are the same for ANY two points A and B.
- $\vec{r}_{B/A}$ points FROM point A TO point B.
- If A and B lie in the same plane, then: $\vec{a}_B = \vec{a}_A + \vec{\alpha} \times \vec{r}_{B/A} - \omega^2 \vec{r}_{B/A}$
- From where did these equations come? From the general motion of two points (Chapter 1) with the constraint that $|\vec{r}_{B/A}|$.