

# *ME 274: Basic Mechanics II*

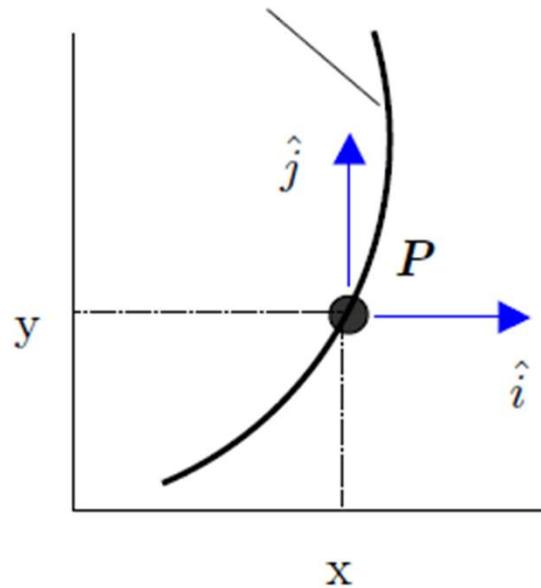
Lecture 4: Point Kinematics, Joint Description

# Kinematic Descriptions

## Cartesian description:

- Position:  $\vec{r} = x\hat{i} + y\hat{j}$
- Fixed direction basis vectors  $\hat{i}, \hat{j}$
- $\vec{v} = \dot{x}\hat{i} + \dot{y}\hat{j}$
- $\vec{a} = \ddot{x}\hat{i} + \ddot{y}\hat{j}$

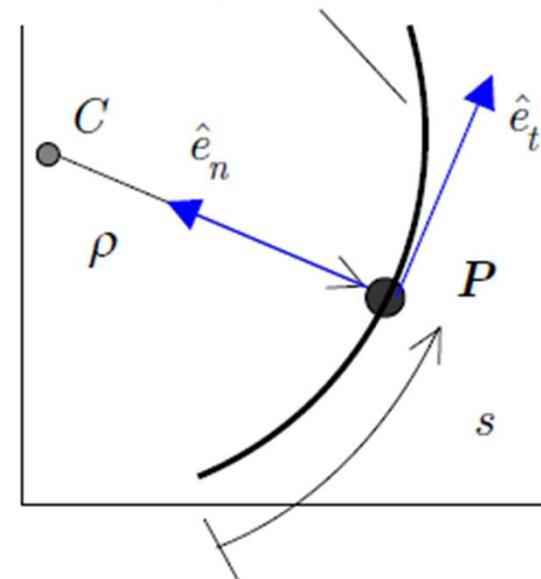
good for horizontal & vertical path of P motion



## Path description:

- Distance along path:  $s(t)$
- $\hat{e}_t, \hat{e}_n$  depend on path geometry
- $\vec{v} = v\hat{e}_t$
- $\vec{a} = \dot{v}\hat{e}_t + \frac{v^2}{\rho}\hat{e}_n$

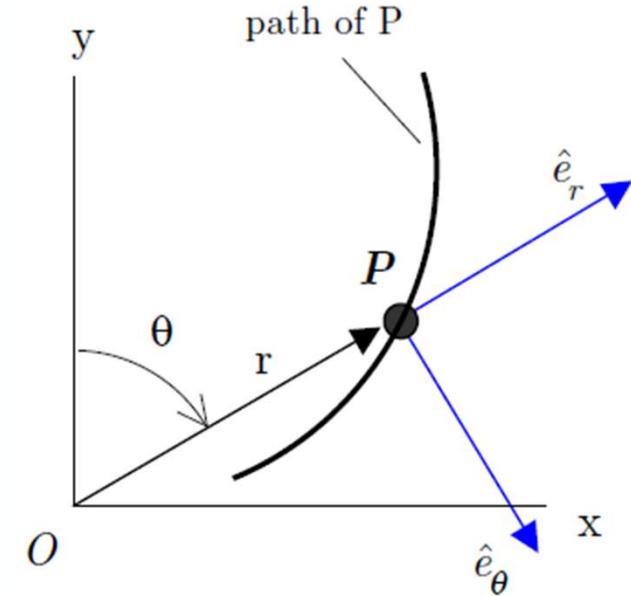
good for speed/ turning path of P



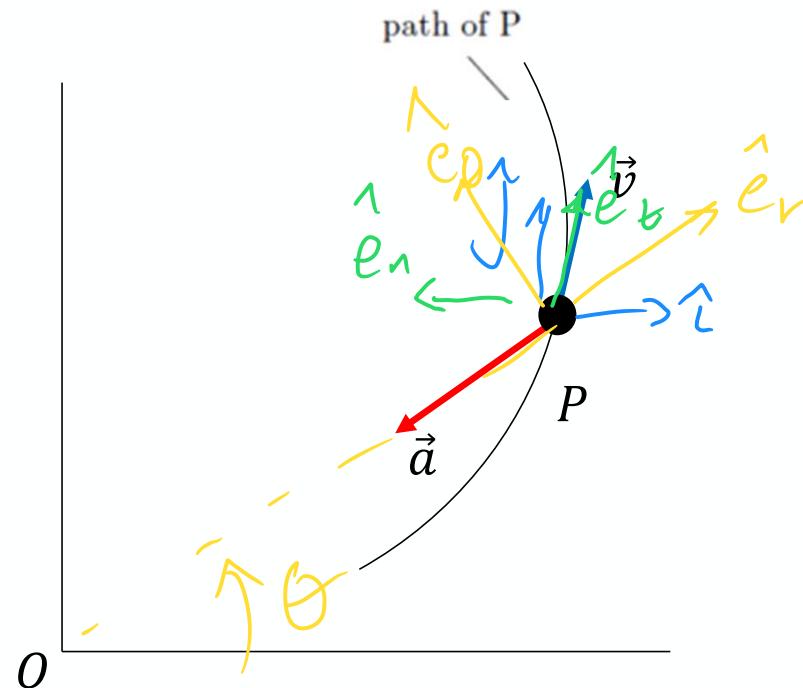
## Polar description:

- Position:  $\vec{r} = r\hat{e}_r$
- $\hat{e}_r, \hat{e}_\theta$  change with particle motion
- $\vec{v} = \dot{r}\hat{e}_r + r\dot{\theta}\hat{e}_\theta$
- $\vec{a} = (\ddot{r} - r\dot{\theta}^2)\hat{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{e}_\theta$

good for central observer



# Different Descriptions - Same Motion



$$\text{Velocity: } \vec{v} = \dot{x}\hat{i} + \dot{y}\hat{j} = v \hat{e}_t = \dot{r}\hat{e}_r + r\dot{\theta}\hat{e}_\theta$$

$$\vec{v} = \vec{v} = \vec{v} = \vec{v}$$

$$\text{Acceleration: } \vec{a} = \ddot{x}\hat{i} + \ddot{y}\hat{j} = \dot{v}\hat{e}_t + \frac{v^2}{\rho}\hat{e}_n = (\ddot{r} - r\dot{\theta}^2)\hat{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{e}_\theta$$

$$\vec{a} = \vec{a} = \vec{a}$$

Convert between descriptions

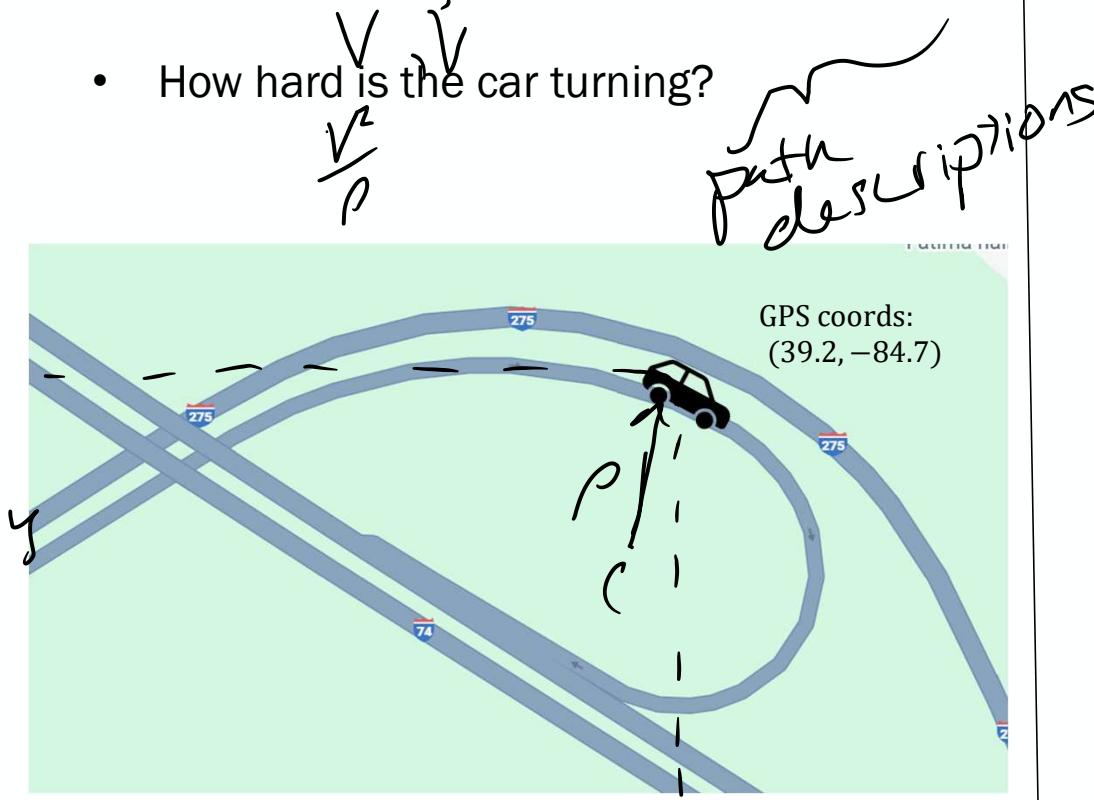
# Joint Description: Combined Usage of Kinematic Descriptions

## Example: Car moving around a turn

The motion of a car is described in Cartesian coordinates

Questions we care about:

- Is the car speeding up or slowing down?
- How hard is the car turning?



## Example: Cheering for a runner

Tracking app gives path information:

- Distance along course  $s(t)$
- Current speed and split times

Questions we care about:

- Where to stand to cheer - runner's absolute position at a time  $(x, y)$

$r, \theta \leftarrow$  polar



# Converting between descriptions: Projection

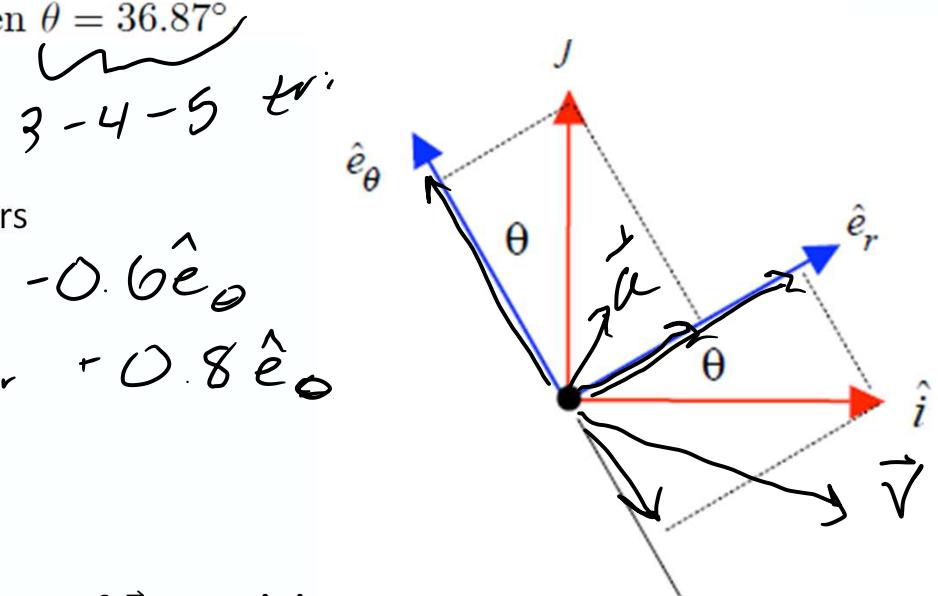
## MOTIVATING EXAMPLE:

Suppose that the velocity and acceleration of a particle are known in terms of their polar coordinates as:  $\vec{v} = (10\hat{e}_r - 20\hat{e}_\theta)$  m/s and  $\vec{a} = (3\hat{e}_r + 2\hat{e}_\theta)$  m/s<sup>2</sup>, where the orientation of the polar unit vectors are shown below relative to a set of Cartesian vectors. From this we want to find the Cartesian components of velocity and acceleration when  $\theta = 36.87^\circ$

Solution:

Write target basis vectors in terms of given basis vectors

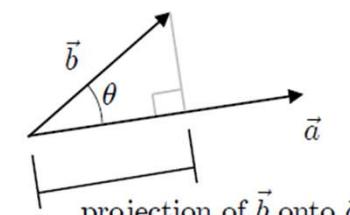
$$\begin{aligned}\hat{i} &= \cos\theta\hat{e}_r - \sin\theta\hat{e}_\theta = 0.8\hat{e}_r - 0.6\hat{e}_\theta \\ \hat{j} &= \sin\theta\hat{e}_r + \cos\theta\hat{e}_\theta = 0.6\hat{e}_r + 0.8\hat{e}_\theta\end{aligned}$$



Calculate velocity components by finding projection of  $\vec{v}$  onto  $\hat{i}, \hat{j}$

$$\begin{aligned}\vec{v} &= x\hat{i} + y\hat{j} \quad \vec{a} = \vec{x}\hat{i} + \vec{y}\hat{j} \\ x &= \vec{v} \cdot \hat{i} = (10\hat{e}_r - 20\hat{e}_\theta) \cdot (0.8\hat{e}_r - 0.6\hat{e}_\theta) \\ &= 8 + 12 = 20 \text{ m/s} \\ \vec{x} &= \vec{a} \cdot \hat{i} \\ y &= \vec{v} \cdot \hat{j} = (3\hat{e}_r + 2\hat{e}_\theta) \cdot (0.6\hat{e}_r + 0.8\hat{e}_\theta) \\ y &= \vec{a} \cdot \hat{j} = 1.8 + 1.6 = 3.4 \text{ m/s} \\ \vec{v} &= 20\hat{i} + 3.4\hat{j}\end{aligned}$$

Projection of  $\vec{b}$  onto  $\vec{a} = |\vec{b}||\hat{e}_a| \cos\theta = \vec{b} \cdot \hat{e}_a$



projection of  $\vec{b}$  onto  $\vec{a}$

# Component extraction via projection

Cartesian:

$$\begin{aligned}\vec{v} &= \dot{x}\hat{i} + \dot{y}\hat{j} \\ \vec{a} &= \ddot{x}\hat{i} + \ddot{y}\hat{j}\end{aligned}$$

$$\begin{aligned}\dot{x} &= \vec{v} \bullet \hat{i} & \dot{y} &= \vec{v} \bullet \hat{j} \\ \ddot{x} &= \vec{a} \bullet \hat{i} & \ddot{y} &= \vec{a} \bullet \hat{j}\end{aligned}$$

Polar:

$$\begin{aligned}\vec{v} &= r\hat{e}_r + r\dot{\theta}\hat{e}_\theta \\ \vec{a} &= (\ddot{r} - r\dot{\theta}^2)\hat{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{e}_\theta\end{aligned}$$

$$\begin{aligned}\dot{r} &= \vec{v} \bullet \hat{e}_r & r\dot{\theta} &= \vec{v} \bullet \hat{e}_\theta \\ \ddot{r} - r\dot{\theta}^2 &= \vec{a} \bullet \hat{e}_r & r\ddot{\theta} + 2\dot{r}\dot{\theta} &= \vec{a} \bullet \hat{e}_\theta\end{aligned}$$

- 1) target basis in terms of given
- 2) take projection

# Converting between descriptions: Coefficient Balancing

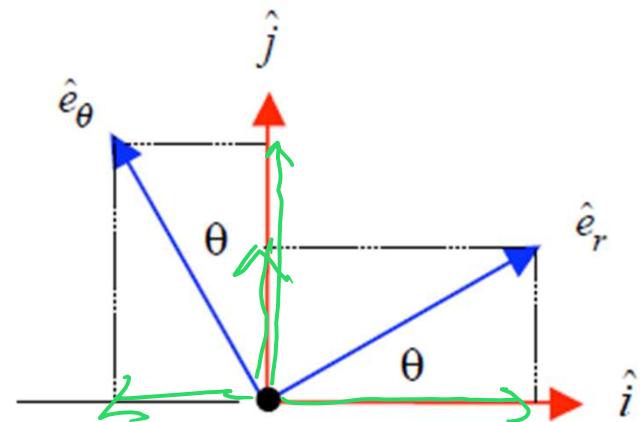
## MOTIVATING EXAMPLE:

Suppose that the velocity and acceleration of a particle are known in terms of their polar coordinates as:  $\vec{v} = (10\hat{e}_r - 20\hat{e}_\theta)$  m/s and  $\vec{a} = (3\hat{e}_r + 2\hat{e}_\theta)$  m/s<sup>2</sup>, where the orientation of the polar unit vectors are shown below relative to a set of Cartesian vectors. From this we want to find the Cartesian components of velocity and acceleration when  $\theta = 36.87^\circ$ .

Solution:

Write given basis vectors in terms of target basis vectors

$$\begin{aligned}\hat{e}_r &= \cos\theta \hat{i} + \sin\theta \hat{j} &= 0.8\hat{i} + 0.6\hat{j} \\ \hat{e}_\theta &= -\sin\theta \hat{i} + \cos\theta \hat{j} &= -0.6\hat{i} + 0.8\hat{j}\end{aligned}$$



Directly substitute into expression for  $\vec{v}$ :

$$\begin{aligned}\vec{v} &= (10\hat{e}_r - 20\hat{e}_\theta) = 10(0.8\hat{i} + 0.6\hat{j}) - 20(-0.6\hat{i} + 0.8\hat{j}) \\ &= 8\hat{i} + 6\hat{j} + 12\hat{i} - 16\hat{j} = 20\hat{i} - 10\hat{j} \text{ m/s}\end{aligned}$$

$$\begin{aligned}\vec{a} &= (3\hat{e}_r + 2\hat{e}_\theta) = 3(0.8\hat{i} + 0.6\hat{j}) + 2(-0.6\hat{i} + 0.8\hat{j}) \\ &= 1.2\hat{i} + 3.4\hat{j} \text{ m/s}^2\end{aligned}$$

# Example 2

## MOTIVATING EXAMPLE:

Suppose the velocity and acceleration of a particle are known in terms of their Cartesian components as:  $\vec{v} = (30\hat{i} - 40\hat{j})$  m/s and  $\vec{a} = (-10\hat{j})$  m/s<sup>2</sup>. From this, we want to find the speed  $v$ , rate of change of speed  $\dot{v}$  and the radius of curvature  $\rho$  of the path of the particle (path description variables).

$$\rightarrow v = |\vec{v}| = \sqrt{30^2 + (-40)^2} = \boxed{50 \text{ m/s}}$$

$$\rightarrow \vec{a} = \frac{\dot{v} \hat{e}_t}{\rho} + \frac{v^2}{\rho} \hat{e}_n$$
$$\rightarrow \vec{v} = v \hat{e}_t \rightarrow \hat{e}_t = \frac{\vec{v}}{v} = \frac{30\hat{i} - 40\hat{j}}{50} = 0.6\hat{i} - 0.8\hat{j}$$

$$\dot{v} = \vec{a} \cdot \hat{e}_t = (-10\hat{j}) \cdot (0.6\hat{i} - 0.8\hat{j}) = 8 \text{ m/s}^2$$

$$|\vec{a}|^2 = \dot{v}^2 + \left(\frac{v^2}{\rho}\right)^2 \rightarrow \left(\frac{v^2}{\rho}\right)^2 = |\vec{a}|^2 - \dot{v}^2$$

$$\rightarrow \rho = \frac{v^2}{\sqrt{|\vec{a}|^2 - \dot{v}^2}} = \frac{50^2}{\sqrt{10^2 - 8^2}}$$

$$= \frac{2500}{6} \text{ m}$$

# Example 1.C.2

Given: Pin P is constrained to move in the slotted guides that move at right angles to one another. At the instant shown, guide A moves to the right with a speed of  $v_A$ , a speed that is changing at a rate of  $\dot{v}_A$ . At the same time, B is moving downward with a speed of  $v_B$  with a rate of change of speed of  $\dot{v}_B$ .

↳ given cartesian

Find:

(a) The rate of change of speed of P at this instant; and

(b) The radius of curvature  $\rho$  of the path followed by P at this instant.

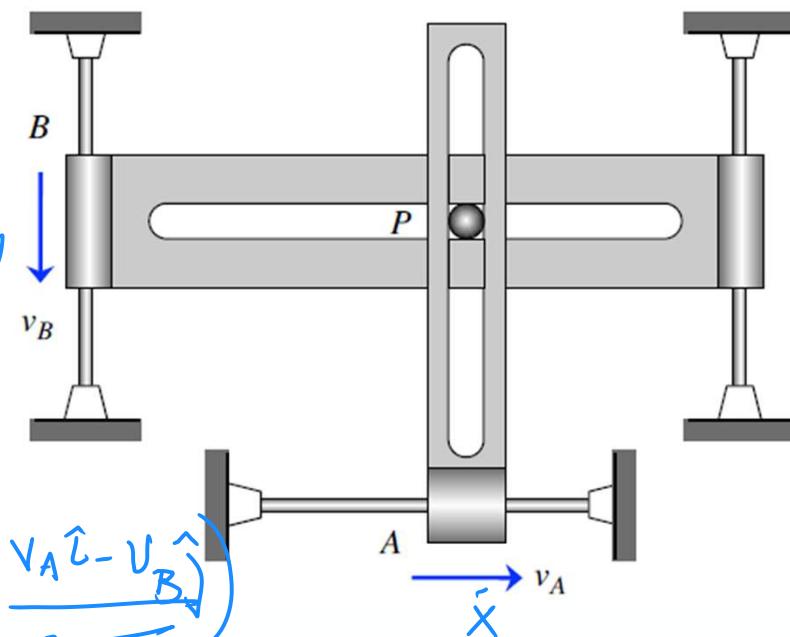
z path coord.

Use the following parameters:  $v_A = 0.2 \text{ m/s}$ ,  $v_B = 0.15 \text{ m/s}$ ,  $\dot{v}_A = 0.75 \text{ m/s}^2$  and  $\dot{v}_B = 0$ .

$$\vec{v} = \dot{x} \hat{i} + \dot{y} \hat{j} = v_A \hat{i} - v_B \hat{j}$$

$$\vec{a} = \ddot{x} \hat{i} + \ddot{y} \hat{j} = \dot{v}_A \hat{i} - \dot{v}_B \hat{j}$$

$$\vec{v} = v \hat{e}_t \rightarrow \hat{e}_t = \frac{\vec{v}}{v} = \frac{v_A \hat{i} - v_B \hat{j}}{\sqrt{v_A^2 + v_B^2}}$$



$$a) \vec{a} = \frac{v \vec{e}_t}{\rho} + \frac{v^2}{\rho} \hat{e}_n$$

$$\dot{v} = \vec{a} \cdot \hat{e}_t = (v_A \hat{i} - v_B \hat{j}) \cdot \frac{(v_A \hat{i} - v_B \hat{j})}{\sqrt{v_A^2 + v_B^2}}$$

$$= \frac{1}{\sqrt{v_A^2 + v_B^2}} (v_A v_A - v_B v_B)$$

← sub + solve

## Example 1.C.2.cont

$$b) |a|^2 = \dot{v}^2 \cdot \left(\frac{v^2}{\rho}\right)^2 \Rightarrow \rho = \frac{v^2}{\sqrt{|a|^2 - \dot{v}^2}}$$

$$|a|^2 = \dot{v}_A^2 + \dot{v}_B^2$$

$$\rho = \frac{v^2}{\sqrt{\dot{v}_A^2 + \dot{v}_B^2 - \dot{v}^2}}$$

} from part A

# Example 1.C.4

$$\dot{v}_p = 0$$

Given: At the bottom of a loop, an airplane P has a constant speed of  $v_p$  with the radius of curvature for the aircraft being  $\rho$ . The airplane is at a radial distance of  $r$  and at an angle of  $\theta$  from a radar tracking station at O.

Find: Determine numerical values for  $\dot{r}$  and  $\ddot{\theta}$  at this instant in time.

Use the following:  $v_p = 75$  m/s,  $\rho = 3000$  m,  $r = 1000$  m and  $\theta = 36.87^\circ$ .

target:  $\hat{e}_r, \hat{e}_\theta$  given:  $\hat{e}_t, \hat{e}_n$

from geometry:

$$\hat{e}_r = \cos\theta \hat{e}_t + \sin\theta \hat{e}_n$$

$$\hat{e}_\theta = -\sin\theta \hat{e}_t + \cos\theta \hat{e}_n$$

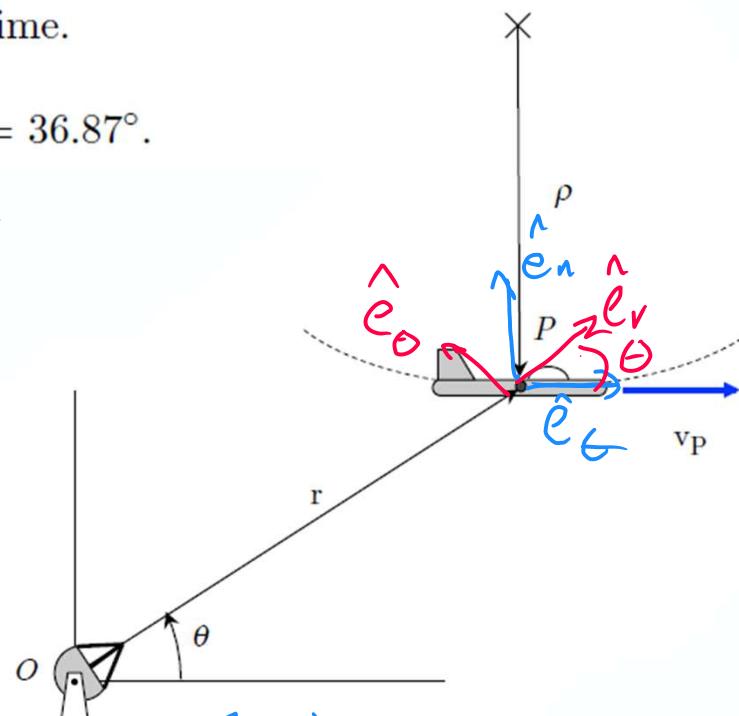
$$\vec{v} = v \hat{e}_t = \dot{r} \hat{e}_r + r \dot{\theta} \hat{e}_\theta$$

$$r = \vec{v} \cdot \hat{e}_r = (v \hat{e}_t) \cdot (\cos\theta \hat{e}_t + \sin\theta \hat{e}_n) = v \cos\theta \quad \{$$

$$r \dot{\theta} = \vec{v} \cdot \hat{e}_\theta = (v \hat{e}_t) \cdot (-\sin\theta \hat{e}_t + \cos\theta \hat{e}_n) = -v \sin\theta$$

given  $\theta, r$  sub & solve

$$\dot{r}, \ddot{\theta}$$



## Example 1.C.4.cont

$$\vec{a} = \dot{r}\hat{e}_r + \underbrace{\frac{v^2}{r}\hat{e}_n}_{=0 \text{ given}} = (\ddot{r} - r\dot{\theta}^2)\hat{e}_r + (r\ddot{\theta} + 2r\dot{r}\dot{\theta})\hat{e}_\theta$$

$$\vec{a} = \frac{v^2}{r}\hat{e}_n$$

$$(\ddot{r} - r\dot{\theta}^2) = \vec{a} \cdot \hat{e}_r = \left(\frac{v^2}{r}\hat{e}_n\right) \cdot (\cos\theta\hat{e}_r + \sin\theta\hat{e}_n)$$

$$(\ddot{r} - r\dot{\theta}^2) = \frac{v^2}{r} \sin\theta$$

$$(r\ddot{\theta} + 2r\dot{r}\dot{\theta}) = \vec{a} \cdot \hat{e}_\theta = \left(\frac{v^2}{r}\hat{e}_n\right) (-\sin\theta\hat{e}_r + \cos\theta\hat{e}_n)$$

$$(r\ddot{\theta} + 2r\dot{r}\dot{\theta}) = \frac{v^2}{r} \cos\theta$$

2 eqns, 2 unknowns  $\rightarrow$  sub & solve  
for  $\dot{r}, \dot{\theta}$