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Kinematic Descriptions

Polar description:

Cartesian description: Path description: DAt
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Different Descriptions - Same Motion
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Joint Description: Combined Usage of Kinematic Descriptions

Example: Car moving around a turn

The motion of a car is described in Cartesian
coordinates

Questions we care about:

e Isthe car speeding up or slowing down?

« How hard\l/s th¥ car turning?
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Example: Cheering for a runner

Tracking app gives path information:
* Distance along course -2 5&\ 'wd’“
* Current speed and split times
V vV
Questions we care about: dus'»f/"
* Where to stand to cheer - runner’s L{C
absolute position at a time (,4 )
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Converting between descriptions: Projection

MOTIVATING EXAMPLE:

Suppose that the velocity and acceleration of a particle are known in terms of their polar coor-
dinates as: 7 = (10¢, — 20ég) m/s and @ = (3¢, + 2¢9) m/s?, where the orientation of the polar
unit vectors are shown below relative to a set of Cartesian vectors. From this we want to find the

Cartesian components of velocity and acceleration when ¢ = 36.87°
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Component extraction via projection

Cartesian: - —

S cn e =1 ®1 y=vej

vV = XLty A .
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Polar . ——
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Converting between descriptions: Coefficient Balancing

MOTIVATING EXAMPLE:

Suppose that the velocity and acceleration of a particle are known in terms of their polar coor-
dinates as: 7 = (10¢, — 20ég) m/s and @ = (3¢, + 2¢g) m/s?, where the orientation of the polar
unit vectors are shown below relative to a set of Cartesian vectors. From this we want to find the
Cartesian components of velocity and acceleration when 6 = 36.87°.

Solution: : J
Write given basis vectors in terms of target basis vectors
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Directly substitute into expression for ¥:
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Example 2

MOTIVATING EXAMPLE:

Suppose the velocity and acceleration of a particle are known in terms of their Cartesian components

as: ¥ = (30i—407) m/s and @ = (—105) m/s>. From this, we want to find the speed v, rate of change
of speed © and the radius of curvature p of the path of the particle (path description variables).
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Example 1.C.2

Given: Pin P is constrained to move in the slotted guides that move at right angles to one another.
At the instant shown, guide A moves to the right with a speed of v4, a speed that is changing at
a rate of © VA At the same time, B is moving downward with a speed of vp with a rate of change of

speed of Tp. (2 7 ivem (e Fes o

Find:
(a) The rate of change of speed of P at this instant; and FDCH" coord .
(b) The radius of curvature p of the path followed by P at this instan

Use the following parameters: v4 = 0.2 m/s, vg = 0.15 m/s, ¥4 = 0.75 m/s? and 0 = 0.
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Example 1. C 2.cont \
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Example 1.C.4

Given: At the bottom of a loop, an airplane P has a constant speed of vp with the radius of
curvature for the aircraft ]lclng_y_ The airplane is at a radial distance of r and at an angle of #

/ —

from a radar tracking station at O.
Find: Determine numerical values for # and # at this instant in time. <

Use the following;: zp = () m/s, p = 3000 m, r = 1000 m (111(1 6 = 36.87°
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Example 1.C.4.cont
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