

ME 274: Basic Mechanics II

Lecture 2: Point Kinematics, Path Description

PURDUE
UNIVERSITY®

| School of Mechanical Engineering

Housekeeping

- Brightspace/Gradescope access?
- Lecture notes: <https://www.purdue.edu/freeform/me274/quizzes-2/>
- Hw 1 due **Tonight, 11:59 pm** –submit to Gradescope
- Hw 2 released today

From Last Lecture...

Describing motion: particle kinematics – for all coordinate systems:

- Position, $\vec{r}(t)$
- Velocity, $\vec{v}(t) \rightarrow \vec{v} = \frac{d\vec{r}}{dt}$
- Acceleration, $\vec{a}(t) \rightarrow \vec{a} = \frac{d^2\vec{r}}{dt^2}$

Cartesian description: The path of particle P is expressed in terms of x and y components

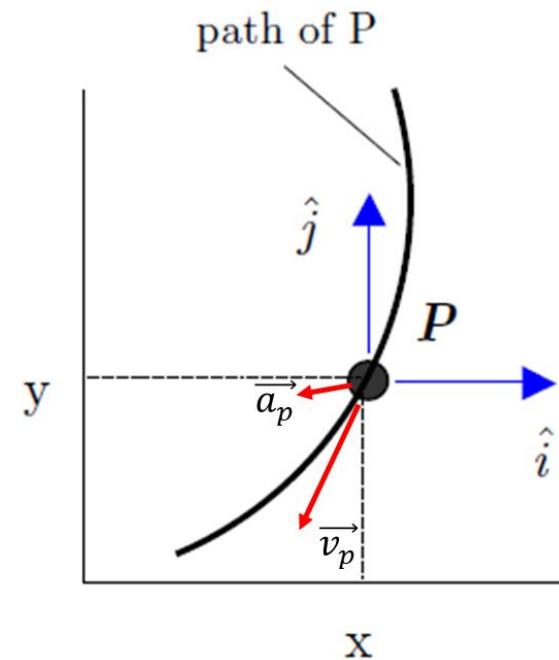
- $\vec{r} = x(t)\hat{i} + y(t)\hat{j}$
- $\vec{v} = \frac{d\vec{r}}{dt} = \dot{x}\hat{i} + \dot{y}\hat{j}$
- $\vec{a} = \frac{d^2\vec{r}}{dt^2} = \ddot{x}\hat{i} + \ddot{y}\hat{j}$

Where \hat{i}, \hat{j} are **constant** basis vectors

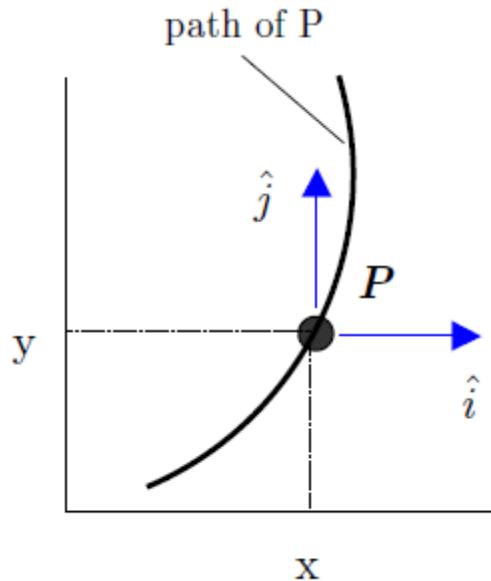
Differentiation requires the **chain rule**:

if $x = x(t)$ and $y = f(x)$:

- $\dot{x} = \frac{dx}{dt},$
- $\dot{y} = \frac{dy}{dt} = \frac{dy}{dx} \frac{dx}{dt} = \dot{x} \frac{dy}{dx}$



Choosing a Kinematic Description

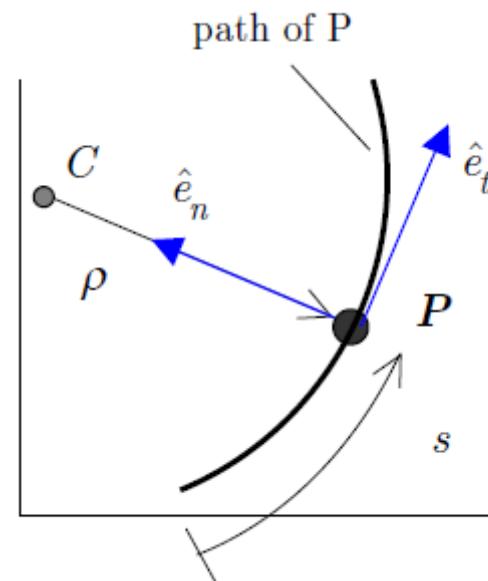


Cartesian description:

- Position: $x(t), y(t)$
- Fixed direction basis vectors \hat{i}, \hat{j}

Works best when:

- Motion aligns with horizontal/vertical directions
- Geometry is naturally written in x and y



Path description:

- Position defined by $s(t)$
- Tangent and normal basis vectors \hat{e}_t, \hat{e}_n depend on path geometry

Works best when:

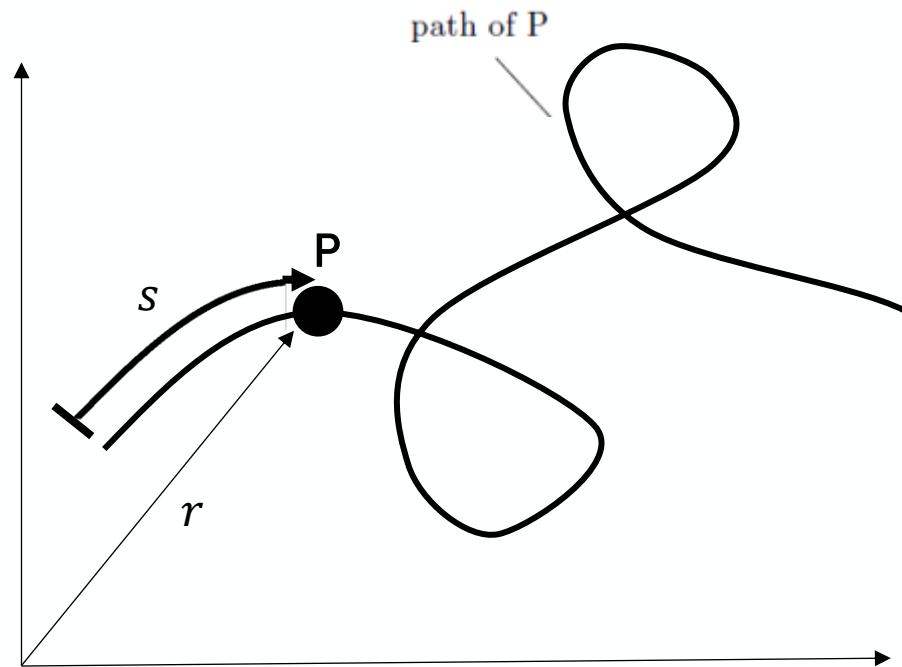
- Motion constrained to a known path
- We care about speed and curvature

Motivating Example: Roller Coasters

Path description: Position

If a particle, P , moves along a known path, the position, \vec{r} , is known in terms of the distance, s , the particle has moved along the path.

- $s = s(t) \leftarrow$ Scalar (arc length)
- $\vec{r} = \vec{r}(s) \leftarrow$ Vector



Remember for all descriptions

$$\vec{v} = \frac{d\vec{r}}{dt}$$

To solve for velocity in the path description, we use the **chain rule of differentiation**:

$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{d\vec{r}}{ds} \frac{ds}{dt}$$

So what do these mean physically?

Velocity, Speed, and $\hat{\mathbf{e}}_t$

$$\text{Velocity vector: } \vec{v} = \frac{d\vec{r}}{dt} = \frac{d\vec{r}}{ds} \frac{ds}{dt}$$

$\frac{ds}{dt}$ → the rate of change of distance with respect to time = **speed**, v

$$\frac{d\vec{r}}{ds} = \lim_{\Delta s \rightarrow 0} \left(\frac{\Delta \vec{r}}{\Delta s} \right)$$

- $\Delta \vec{r}$ → change in particle position
- $|\Delta \vec{r}|$ → chord length
- Δs → arc length

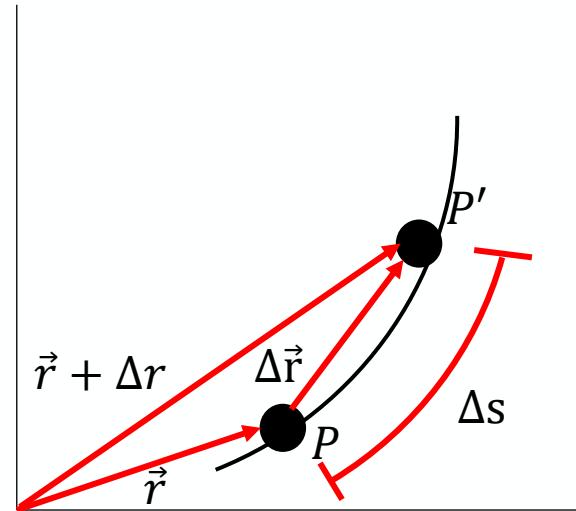
Magnitude of $\frac{d\vec{r}}{ds}$:

As $\Delta s \rightarrow 0$, $|\Delta \vec{r}| \rightarrow \Delta s$,

meaning $\frac{|\Delta \vec{r}|}{\Delta s} = 1$, making $\frac{d\vec{r}}{ds}$ a **unit vector**

Direction of $\frac{d\vec{r}}{ds}$:

As $\Delta s \rightarrow 0$, $\Delta \vec{r}$ becomes **tangent** to the path



Therefore: $\frac{d\vec{r}}{ds}$ is a **tangent unit vector**, $\hat{\mathbf{e}}_t$, and $\vec{v} = \frac{d\vec{r}}{ds} \frac{ds}{dt} = v \hat{\mathbf{e}}_t$

Acceleration and curvature

Differentiate wrt time:

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d}{dt}(\nu \hat{e}_t)$$

Use the product rule:

$$\vec{a} = \dot{\nu} \hat{e}_t + \nu \frac{d\hat{e}_t}{dt}$$

Use the chain rule:

$$\frac{d\hat{e}_t}{dt} = \frac{d\hat{e}_t}{ds} \frac{ds}{dt} \quad \text{←remember } \frac{ds}{dt} = \nu$$

Using chain rule and path geometry:

$$\frac{d\hat{e}_t}{ds} = \frac{d\hat{e}_t}{d\theta} \frac{d\theta}{ds}$$

Therefore:

$$\vec{a} = \dot{\nu} \hat{e}_t + \nu^2 \frac{d\hat{e}_t}{d\theta} \frac{d\theta}{ds} \quad \text{←we can simplify further}$$

Acceleration and curvature

$$\vec{a} = \dot{v}\hat{e}_t + v^2 \frac{d\hat{e}_t}{d\theta} \frac{d\theta}{ds}$$

\hat{e}_t and \hat{e}_n can be related to \hat{i} and \hat{j} as:

$$\hat{e}_n = -\sin\theta \hat{i} + \cos\theta \hat{j}$$

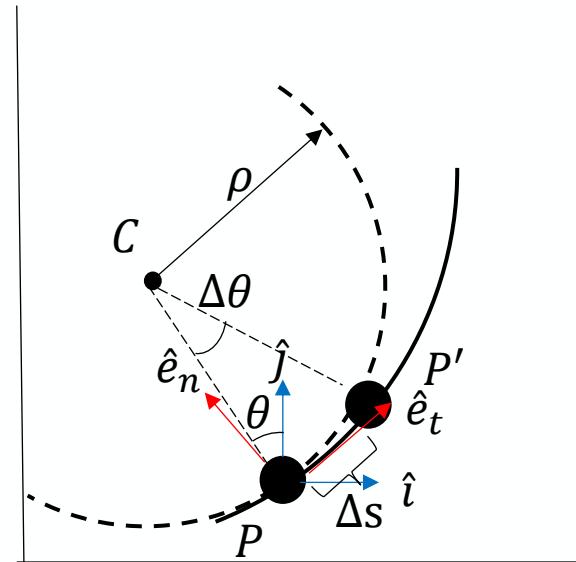
$$\hat{e}_t = \cos\theta \hat{i} + \sin\theta \hat{j}$$

Therefore:

$$\frac{d\hat{e}_t}{d\theta} = -\sin\theta \hat{i} + \cos\theta \hat{j} = \hat{e}_n$$

From path geometry:

$$ds = \rho d\theta \Rightarrow \frac{ds}{d\theta} = \frac{1}{\rho}$$



C = "center of curvature"

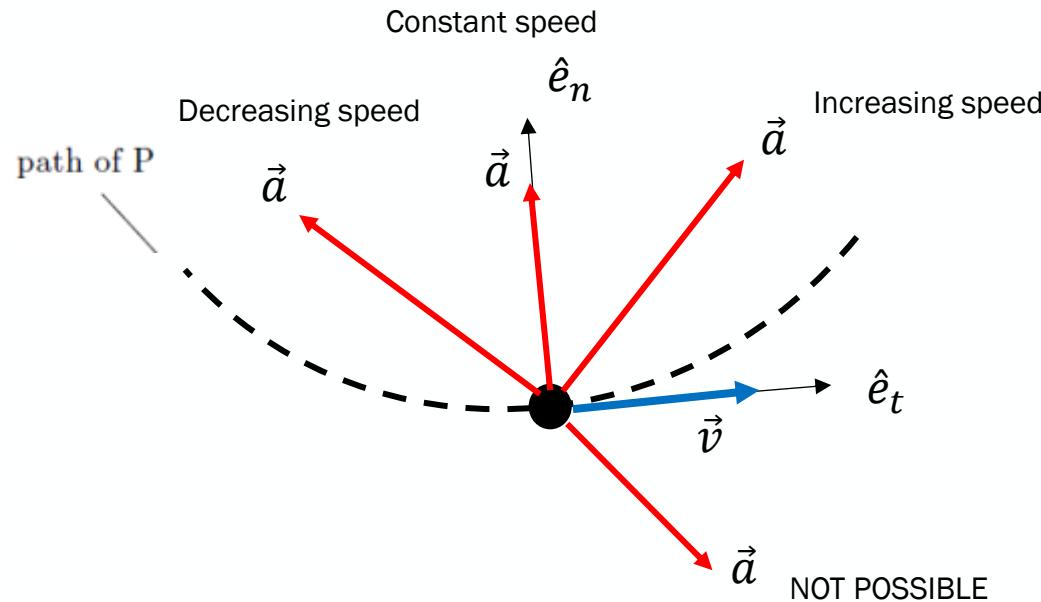
ρ = "radius of curvature"

Combining terms:

$$\vec{a} = \dot{v}\hat{e}_t + \frac{v^2}{\rho} \hat{e}_n$$

Fundamentals of the Path Description

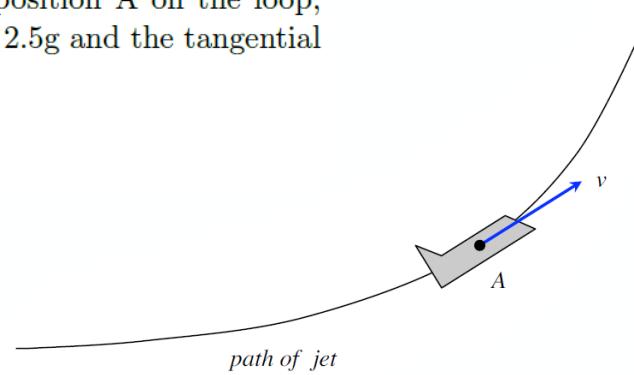
- Velocity: $\vec{v} = v\hat{e}_t$
- Acceleration: $\vec{a} = \dot{v}\hat{e}_t + \frac{v^2}{\rho}\hat{e}_n$
 - \hat{e}_n is always pointed inward
 - $\dot{v} > 0 \rightarrow$ particle is speeding up
 - $\dot{v} < 0 \rightarrow$ particle is slowing down
 - $\dot{v} = 0 \rightarrow$ particle speed is constant



Sample Problem: 1.A.3

Given: A jet is flying on the path shown below with a speed of v . At position A on the loop, the speed of the jet is $v = 600 \text{ km/hr}$, the magnitude of the acceleration is $2.5g$ and the tangential component of acceleration is $a_t = 5 \text{ m/s}^2$.

Find: The radius of curvature of the path of the jet at A.



Solution:

$$\text{Remember } \vec{a} = \dot{v}\hat{e}_t + \frac{v^2}{\rho}\hat{e}_n$$

We are given $|\vec{a}|$, $a_t = \dot{v}$, and v

Find an expression for $|\vec{a}|$:

$$|\vec{a}| = \sqrt{\dot{v}^2 + \left(\frac{v^2}{\rho}\right)^2}$$

Rearrange and solve for ρ :

$$|\vec{a}|^2 = \dot{v}^2 + \left(\frac{v^2}{\rho}\right)^2$$

$$\frac{v^2}{\rho} = \sqrt{|\vec{a}|^2 - \dot{v}^2}$$

$$\rho = \frac{v^2}{\sqrt{|\vec{a}|^2 - \dot{v}^2}}$$

Has to be positive

Sub in known values

Additional lecture Example 1.1

Given: An automobile P is entering a freeway along a "clothoid-shaped" entrance ramp whose radius of curvature ρ is given by $\rho = (a + bs)^{-1}$, where a and b are constants, and s is the distance traveled along the entrance ramp. The speed of P is known as a function of position s on the entrance ramp to be: $v(s) = c + ds$, where c and d are constants.

Use the following parameters in your work: $a = 0.005/\text{ft}$, $b = 1 \times 10^{-5}/\text{ft}^2$, $c = 25 \text{ ft/s}$ and $d = 0.25/\text{s}$.

Find:

(a) Determine the velocity and acceleration vectors for P. Express these vectors in terms of their path coordinates, and in terms of, at most: s , a , b , c and d .

Solution:

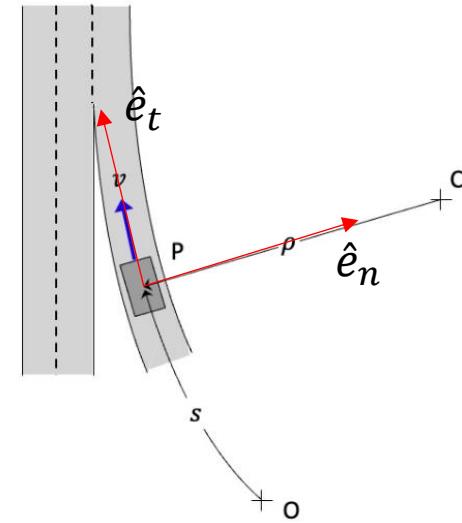
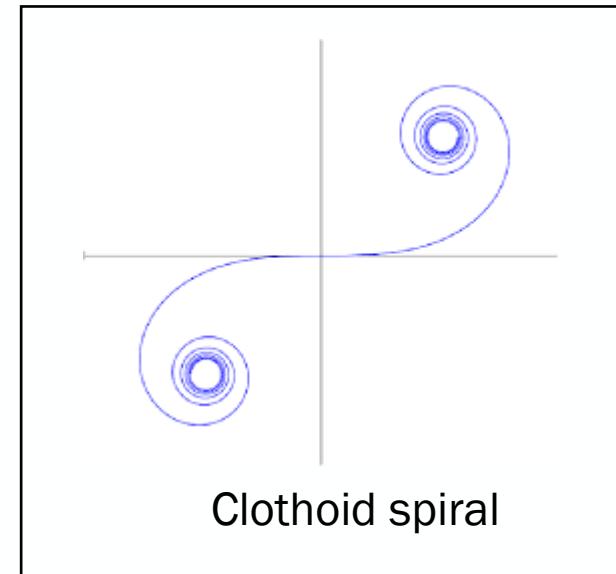
$$\text{Velocity} \rightarrow \vec{v} = v \hat{e}_t = (c + ds) \hat{e}_t$$

$$\text{Acceleration} \rightarrow \vec{a} = \dot{v} \hat{e}_t + \frac{v^2}{\rho} \hat{e}_n$$

$$\dot{v} = \frac{dv}{dt} = \frac{dv}{ds} \frac{ds}{dt}$$
$$\dot{v} = (c + ds)d$$

$$\frac{v^2}{\rho} = (c + ds)^2(a + bs)$$

$$\rightarrow \vec{a} = (c + ds)d \hat{e}_t + (c + ds)^2(a + bs) \hat{e}_n$$



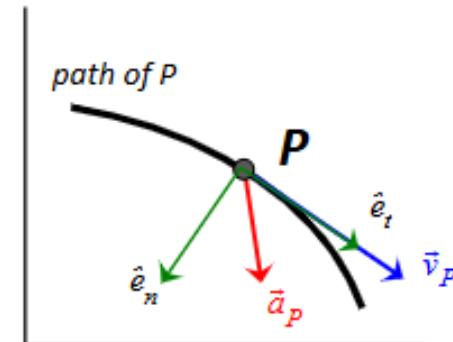
Summary: Particle Kinematics – Path Description

1. **PROBLEM:** Motion of a point described in path variables.

2. **FUNDAMENTAL EQUATIONS:**

$$\vec{v}_P = v_P \hat{e}_t = \text{velocity of } P$$

$$\vec{a}_P = \dot{v}_P \hat{e}_t + \frac{v_P^2}{\rho} \hat{e}_n = \text{acceleration of } P$$



where \hat{e}_t and \hat{e}_n are unit vectors tangent and (inwardly) normal to the path.

3. **OBSERVATIONS:** *In regard to the path description kinematics, we see*

- Velocity is **ALWAYS** tangent to the path.
- Acceleration, in general, has **BOTH** normal and tangential components.
- Note that acceleration depends on three factors: speed v_P , rate of change of speed \dot{v}_P and radius of curvature of the path ρ .
- Rate of change of speed is the projection of acceleration onto the unit tangent vector: $\dot{v}_P = \vec{a}_P \cdot \hat{e}_t$
- Rate of change of speed is **NOT** equal to the magnitude of acceleration:

$$|\vec{a}_P| = \sqrt{\dot{v}_P^2 + \left(v_P^2 / \rho\right)^2} \neq |\dot{v}_P|$$