

ME 274: Basic Mechanics II

Lecture 1: Course Intro & Point Kinematics, Cartesian Description

PURDUE
UNIVERSITY®

| School of Mechanical Engineering

ME 274 Course Structure

- Textbook: Dynamics – A Lecturebook
 - <https://www.purdue.edu/freeform/me274/daily-schedule-sp-2026/>
 - Will be **used daily during lecture**
 - Can be purchased for \$90 from the University Book Store
- Course website: **<https://www.purdue.edu/freeform/me274>**
 - Homework assignments, solution videos, and discussion posts
 - Additional example problems
 - Section specific announcements on instructor page

ME 274 Course Structure

Assignments and Grading

Grade scale: 97-100% A+, 93-97% A, 90-93% A-, 87-90% B+, etc.....

Homework and Quizzes: 25%

Homework

- Two homework problems per lecture, submitted to Gradescope by **11:59 PM the day of the next lecture.**
- One problem graded for correctness, one problem graded for completion.
- Three dropped assignments.

Quizzes

- In-class quizzes will be given throughout the semester and will be **unannounced**.
- Quizzes serve as practice for you and an assessment of class understanding for me.
- Grading will be based off completion/demonstrated effort.
- If you need to miss a lecture email me **before the start of class** with the subject line **ME 274 Absence** (no body text needed).

Exams: 75%

- Two 1.5 hour evening midterms, Th 2/12 & Th 4/2
- 2 hour final exam, date TBD during finals week
- Weighting of midterm average and final: **Higher score → 50% of course grade, Lower score → 25% of course grade**

ME 274 Course Structure

Teaching Team and Help Resources

- Dr. Andress office hours: T 9:30-10:30 & W 3:30-4:30 in ME 2008A, (or by appointment)
- See syllabus for additional faculty office hours
- ME tutorial rooms – staffed by TAs during normal business hours
- Discussion thread on course website
- 800+ of your peers!

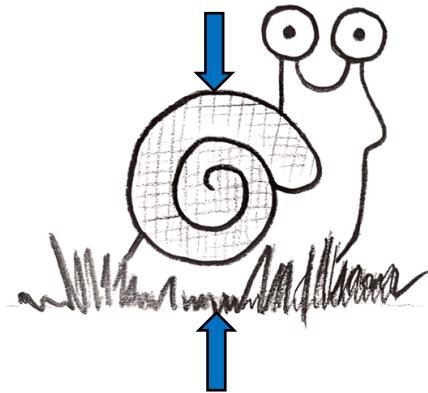
Moving from statics to dynamics

Statics (ME 270):

- Systems in equilibrium

$$\sum F = 0, \sum M = 0$$

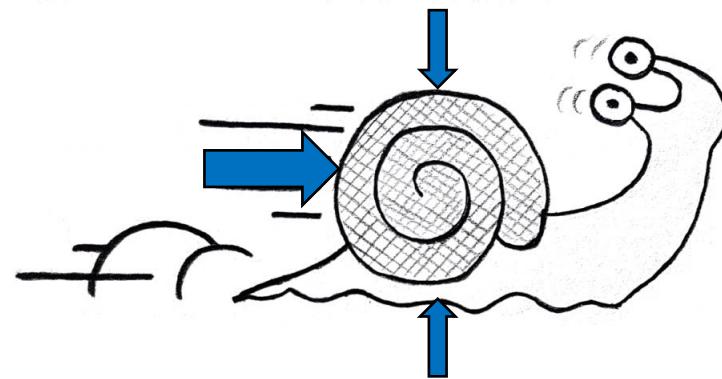
- No acceleration



Dynamics (ME 274):

- Net forces result in acceleration

$$\sum F = m a$$



Course Objectives:

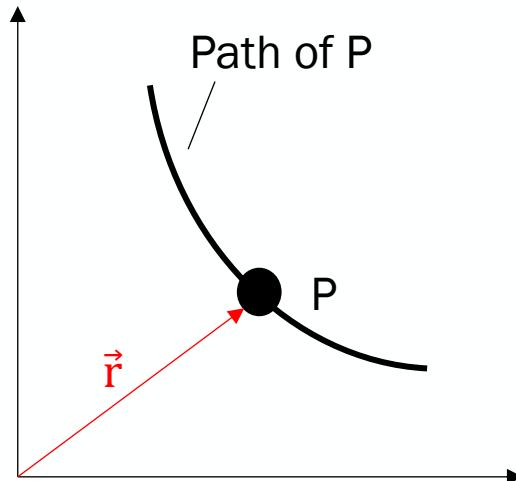
1. Describe motion precisely
2. Relate motion to forces
3. Predict system behavior over time

Describing motion: particle kinematics

Kinematics describe particle motion without reference to forces – **how the system moves** with respect to a chosen coordinate system.

Describes:

- Position, $\vec{r}(t)$
- Velocity, $\vec{v}(t)$
- Acceleration, $\vec{a}(t)$



For all coordinate systems:

$$\vec{v} = \frac{d\vec{r}}{dt},$$

$$\vec{a} = \frac{d^2\vec{r}}{dt^2}$$

Particle Kinematics - Cartesian Description

Cartesian Kinematics

- The path of particle P is expressed in terms of **x** and **y** components

$$\vec{r} = x(t)\hat{i} + y(t)\hat{j}$$

- All vectors are represented as linear combinations of the **unit vectors \hat{i} and \hat{j}**

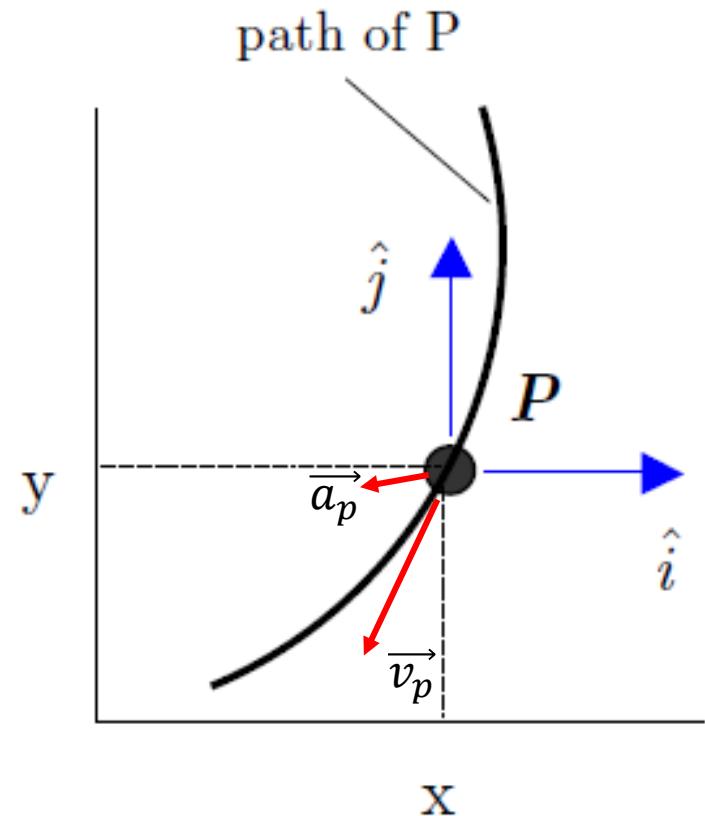
$$\frac{d\hat{i}}{dt} = 0, \frac{d\hat{j}}{dt} = 0$$

Velocity components come from **time derivatives of position components**

$$\vec{v} = \frac{d\vec{r}}{dt} = \dot{x}\hat{i} + \dot{y}\hat{j}$$

Acceleration components come from **second time derivatives of position components**

$$\vec{a} = \frac{d^2\vec{r}}{dt^2} = \ddot{x}\hat{i} + \ddot{y}\hat{j}$$



Explicit vs. Implicit Time Dependence

In Cartesian kinematics, position can be defined in two ways:

Explicit time dependence

- Position components given directly as a function of time:

$$x = x(t), \quad y = y(t)$$

- Velocity and acceleration found by direct differentiation

$$\dot{x} = \frac{dx}{dt}, \dot{y} = \frac{dy}{dt}$$

$$\ddot{x} = \frac{d^2x}{dt^2}, \ddot{y} = \frac{d^2y}{dt^2}$$

Implicit time dependence

- Geometry defines the path and one coordinate depends on time **indirectly**

$$x = x(t), \quad y = f(x) \quad \text{or}$$
$$y = y(t), \quad x = f(y)$$

- Differentiation requires the **chain rule**:

if $x = x(t)$, $y = f(x)$,

$$\dot{x} = \frac{dx}{dt},$$

$$\dot{y} = \frac{dy}{dt} = \frac{dy}{dx} \frac{dx}{dt} = \dot{x} \frac{dy}{dx}$$

Example: Implicit time dependence

Problem Statement: Suppose that $y = \sin(x)$ and $\dot{x} = 3 \text{ m/s} = \text{constant}$, and we want to know the velocity and acceleration when $x = \pi/2$.

Find: Cartesian components of velocity and acceleration

Solution:

x components of velocity and acceleration are known:

$$x = \frac{\pi}{2}, \dot{x} = 3 \text{ m/s} = \text{constant} \rightarrow \ddot{x} = 0$$

To find the y component of velocity, differentiate using the chain rule:

$$y = \sin(x) \rightarrow \dot{y} = \frac{dy}{dt} = \frac{dy}{dx} \frac{dx}{dt}$$

$$\frac{dy}{dx} = \frac{d}{dx}(\sin x) = \cos x, \frac{dx}{dt} = \dot{x} \Rightarrow \dot{y} = \dot{x} \cos x = 3 \cos \frac{\pi}{2} = 0 \text{ m/s}$$

To find the y component of acceleration, differentiate velocity with respect to time:

$$\ddot{y} = \frac{d}{dt}(\dot{y}) = \frac{d}{dt}(\dot{x} \cos x) \leftarrow \text{Use chain and product rule}$$

$$\ddot{y} = \ddot{x} \cos x - \dot{x}^2 \sin x \Rightarrow \ddot{y} = (0) \cos \frac{\pi}{2} - 3^2 \sin \frac{\pi}{2} = -9 \text{ m/s}^2$$

Answer: $\vec{v} = \dot{x}\hat{i} + \dot{y}\hat{j} = 3\hat{i} + 0\hat{j} \text{ m/s}, \vec{a} = \ddot{x}\hat{i} + \ddot{y}\hat{j} = 0\hat{i} - 9\hat{j} \text{ m/s}^2$

Lecturebook example: 1.A.2

Given: A particle P moves on a path whose Cartesian components are given by the following functions of time (where both components are given in inches and time t is given in seconds):

$$x(t) = t^3 + 10$$

$$y(t) = 2 \cos 4t$$

Find: Determine at the time $t = 2$ s:

- (a) The velocity vector of P;
- (b) The acceleration of P; and
- (c) The angle between the velocity and acceleration vectors of P.

Solution:

a) Velocity components can be found directly by differentiating wrt t : $\vec{v} = \dot{x}\hat{i} + \dot{y}\hat{j}$
 $\dot{x} = 3t^2, \quad \dot{y} = -8 \sin 4t$

$\vec{v} = 3t^2\hat{i} - 8 \sin 4t\hat{j} \Rightarrow \text{plug in } t = 2 \text{ and solve}$

b) Acceleration components can be found by taking the second derivative wrt t : $\vec{a} = \ddot{x}\hat{i} + \ddot{y}\hat{j}$
 $\ddot{x} = 6t, \quad \ddot{y} = -32 \cos 4t$

$\vec{a} = 6t\hat{i} - 32 \cos 4t\hat{j} \Rightarrow \text{plug in } t = 2 \text{ and solve}$

c) From linear algebra remember: $\vec{v} \cdot \vec{a} = |\vec{v}||\vec{a}|\cos(\theta)$

$$\theta = \cos^{-1} \left(\frac{\vec{v} \cdot \vec{a}}{|\vec{v}||\vec{a}|} \right) = \cos^{-1} \left(\frac{\dot{x}\ddot{x} + \dot{y}\ddot{y}}{\sqrt{\dot{x}^2 + \dot{y}^2} \sqrt{\ddot{x}^2 + \ddot{y}^2}} \right) \Rightarrow \text{plug in } t = 2 \text{ and solve}$$

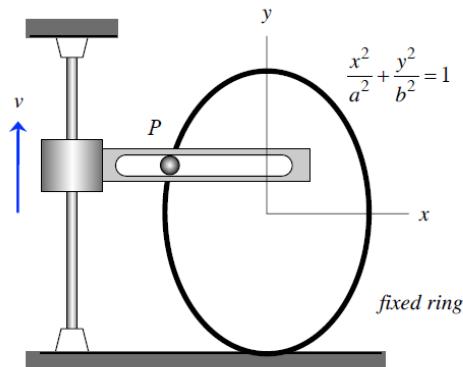
Lecturebook example: 1.A.1

Given: Pin P is constrained to move along a elliptical ring whose shape is given by $x^2/a^2 + y^2/b^2 = 1$ (where x and y are given in mm). The pin is also constrained to move within a horizontal slot that is moving upward at a constant speed of v .

Find: Determine:

- The velocity of pin P at the position corresponding to $y = 6$ mm; and
- The acceleration of pin P at the position corresponding to $y = 6$ mm.

Use the following parameters in your analysis: $a = 5$ mm, $b = 10$ mm, $v = 30$ mm/s.



Solution:

a) Velocity components are defined as: $\vec{v} = \dot{x}\hat{i} + \dot{y}\hat{j}$

Known: vertical motion of P constrained by slot $\rightarrow \dot{y} = v$

Known: the slot moves upward at a constant speed $\rightarrow \ddot{y} = 0$

Known: x position constrained with $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \rightarrow$ implicitly differentiate and solve for \dot{x}

$$\frac{2x\dot{x}}{a^2} + \frac{2y\dot{y}}{b^2} = 0 \Rightarrow b^2x\dot{x} + a^2y\dot{y} = 0$$

Solve for x from original constraint eqn: $x = \pm a\sqrt{\left(1 - \frac{y^2}{b^2}\right)}$

Solve for \dot{x} : $\dot{x} = -\frac{a^2y\dot{y}}{b^2x} = -\frac{ay\dot{y}}{b^2\sqrt{\left(1 - \frac{y^2}{b^2}\right)}}$ \leftarrow Plug in known numerical values and solve

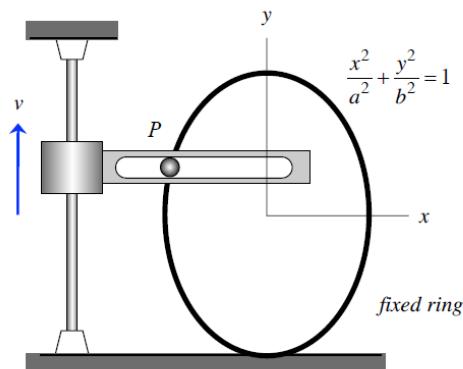
Lecturebook example: 1.A.1

Given: Pin P is constrained to move along a elliptical ring whose shape is given by $x^2/a^2 + y^2/b^2 = 1$ (where x and y are given in mm). The pin is also constrained to move within a horizontal slot that is moving upward at a constant speed of v .

Find: Determine:

- The velocity of pin P at the position corresponding to $y = 6$ mm; and
- The acceleration of pin P at the position corresponding to $y = 6$ mm.

Use the following parameters in your analysis: $a = 5$ mm, $b = 10$ mm, $v = 30$ mm/s.



Solution:

a) Acceleration components defined as: $\vec{a} = \ddot{x}\hat{i} + \ddot{y}\hat{j}$

Known from part (a): $b^2x\dot{x} + a^2y\dot{y} = 0 \rightarrow$ implicitly differentiate and solve for \ddot{x}
 $\dot{x}^2b^2 + x\ddot{x}b^2 + \dot{y}^2a^2 + y\ddot{y}a^2 = 0$

Known from part (a): $\ddot{y} = 0 \rightarrow \dot{x}^2b^2 + x\ddot{x}b^2 + \dot{y}^2a^2 = 0$

Plug in known numerical values and solve for \ddot{x}

Note: once you solve for \dot{x} , \ddot{x} , \dot{y} , \ddot{y} , remember to plug back into the vector equations for \vec{a} , \vec{v}

Summary: Particle Kinematics – Cartesian Description

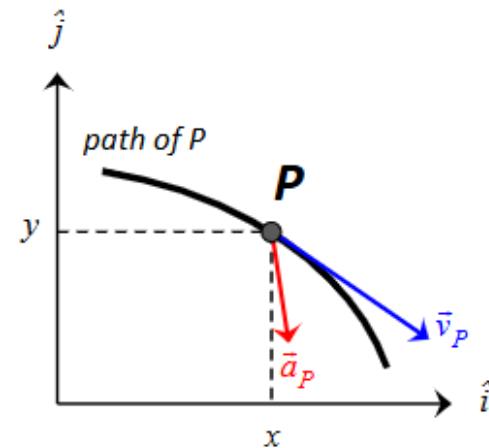
1. *PROBLEM:* Motion of a point is described in Cartesian xy -coordinates.

2. *FUNDAMENTAL EQUATIONS:*

$$\vec{v}_P = \dot{x}\hat{i} + \dot{y}\hat{j} = \text{velocity of } P$$

$$\vec{a}_P = \ddot{x}\hat{i} + \ddot{y}\hat{j} = \text{acceleration of } P$$

with $\dot{x} = \frac{dx}{dt}$, etc.

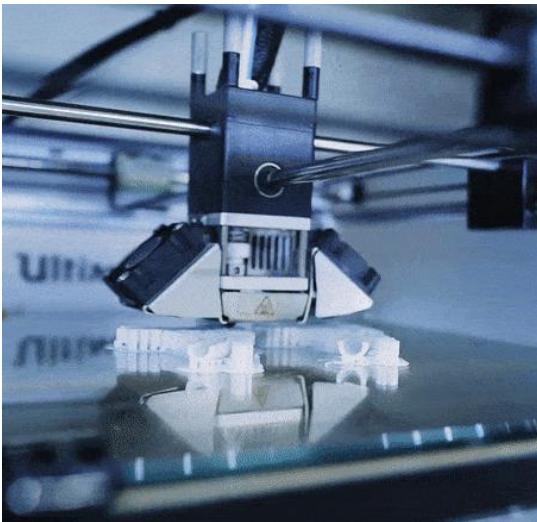


3. *CHAIN RULE OF DIFFERENTIATION:* Suppose that y is given in terms of x (instead of time t) – how do you find $\dot{y} = dy / dt$??

The chain rule!! $\dot{y} = \frac{dy}{dt} = \frac{dy}{dx} \frac{dx}{dt} = \dot{x} \frac{dy}{dx}$ (\leftarrow remember this!)

4. *COMMENT:* The Cartesian description is easy to use, but not as useful as other descriptions. More later...

Real-World Examples of Cartesian Kinematics



FDM 3D Printing

CNC milling

Gantry vending machine