

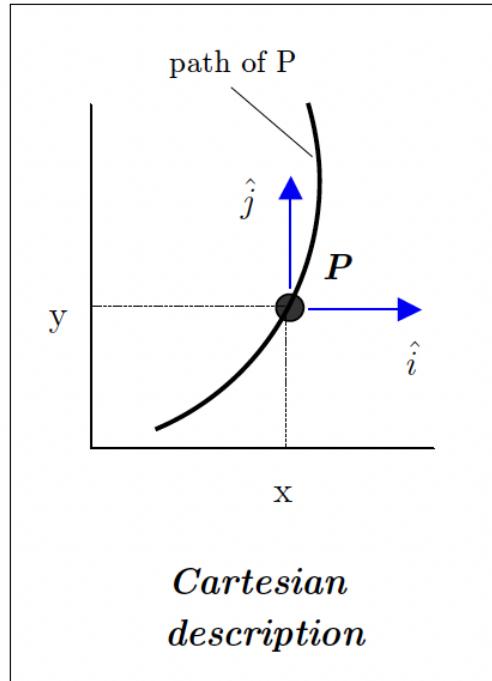
ME 274 Lecture 2

Eugenio “Henny” Frias-Miranda

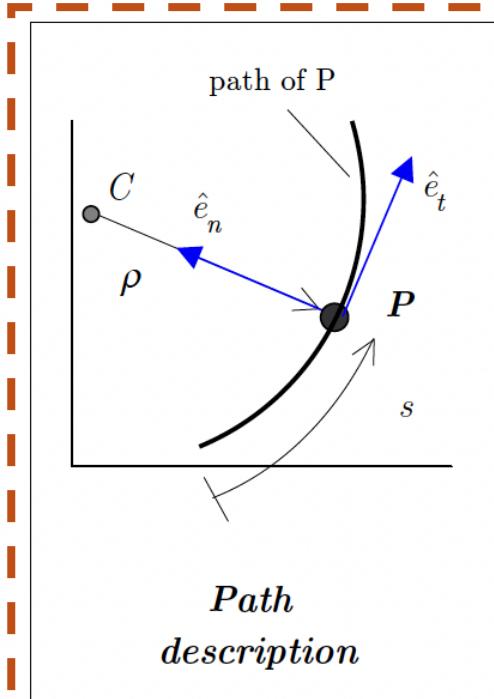
1/14/26

Point Kinematics – Overview

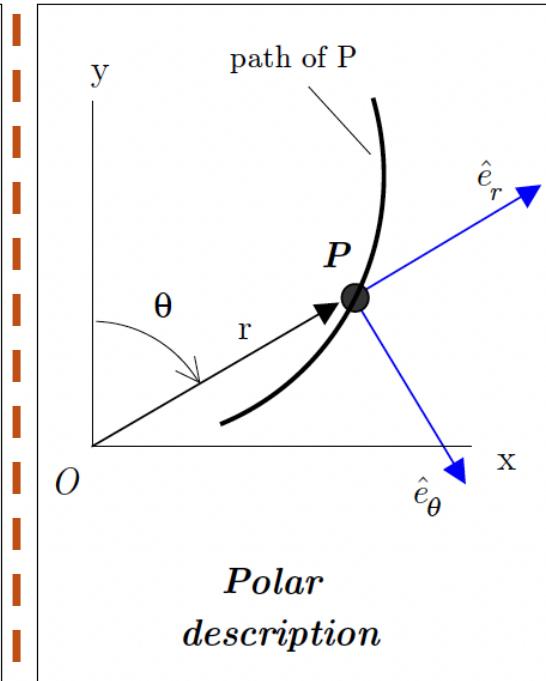
Today's Lecture:



*Cartesian
description*



*Path
description*



*Polar
description*

[pg. 30]

The kinematics of velocity and acceleration may be described in Cartesian, path, or polar coordinates (figure above).

The main difference between these is how we define our unit vectors

Path Description's Unit Vectors

Tangential Unit Vector:

- Unit Vector that is tangent to the path of P

$$\hat{e}_t$$

Normal Unit Vector:

- Points in the direction of the bend in the path of P (ie points to the center of the curve ~in ME274...)

$$\hat{e}_n$$

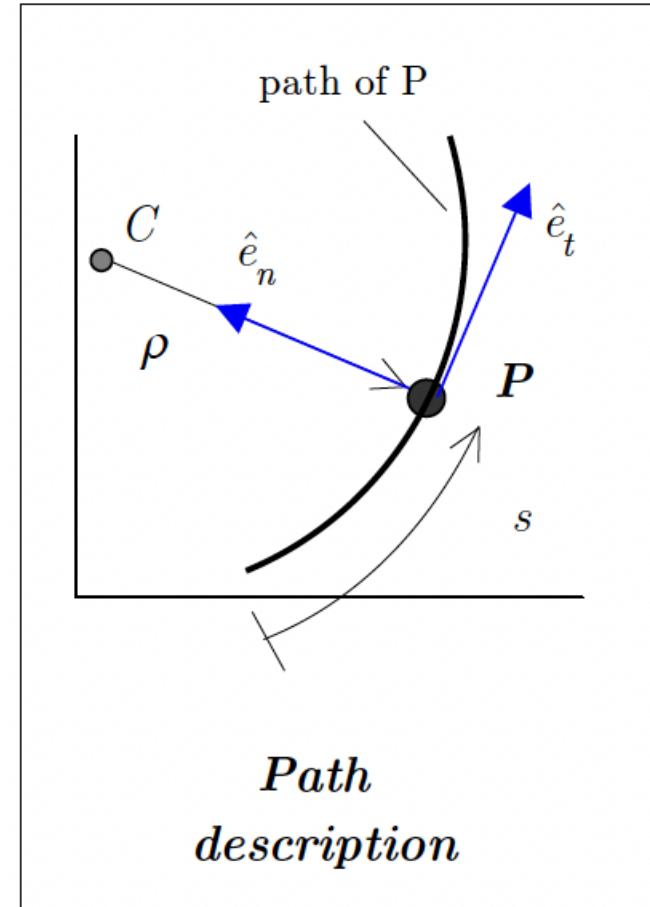
What we are building towards:

- Fundamental Equations of Today

$$\vec{v} = v \hat{e}_t$$

[pg. 34]

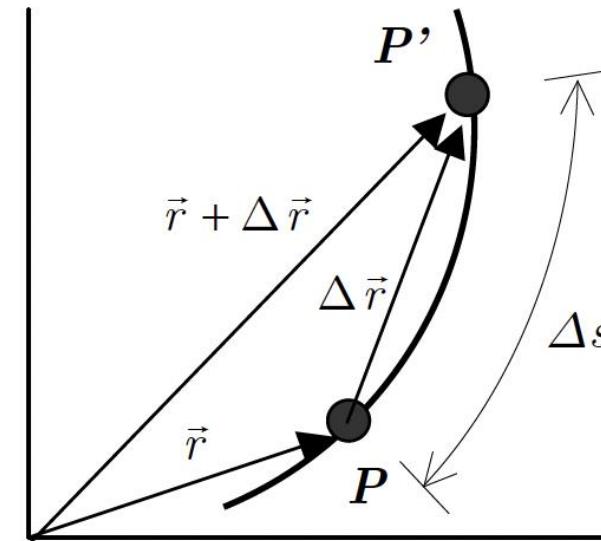
$$\vec{a} = \dot{v} \hat{e}_t + \frac{v^2}{\rho} \hat{e}_n$$



[pg. 30]

Where do we get path description from?

- For the path description, we start by looking at (1) r , the distance from the origin to P , and (2) s , the distance measured along the path of P .
- We take the derivative of r with respect to time (d/dt): $\vec{v} = \frac{d\vec{r}}{dt}$
- Using the chain rule, we end up with $\frac{d\vec{r}}{dt} = \frac{d\vec{r}}{ds} \frac{ds}{dt}$ where $\frac{ds}{dt}$ is equal to v (speed of the particle)
- In summary: $\vec{v} = \frac{d\vec{r}}{dt} = \frac{d\vec{r}}{ds} \frac{ds}{dt} = v \frac{d\vec{r}}{ds}$



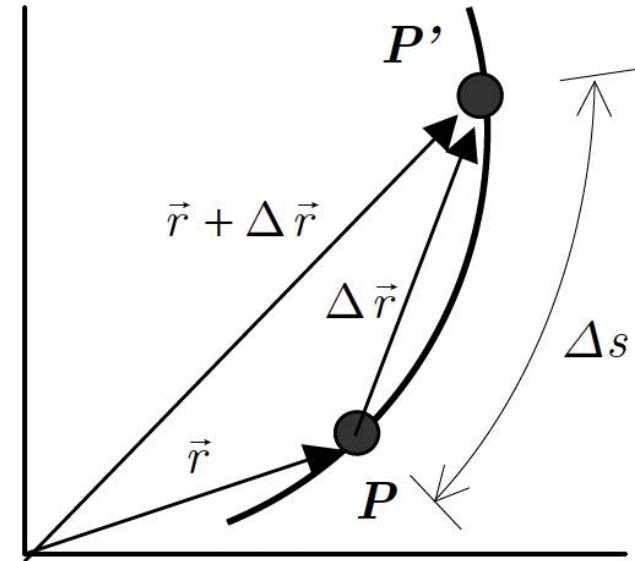
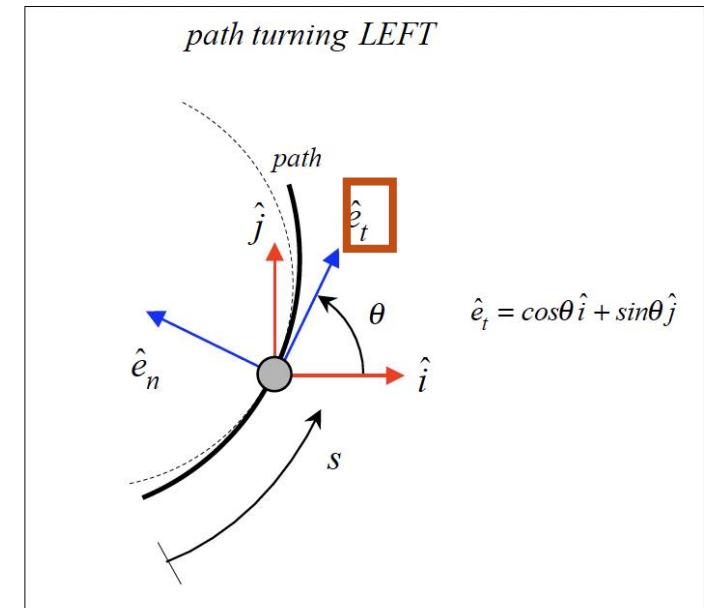
Path description's *velocity vector* derivation

- Building on $v \frac{d\vec{r}}{ds}$; if we take the limit of $\frac{d\vec{r}}{ds}$...

$$\frac{d\vec{r}}{ds} = \lim_{\Delta s \rightarrow 0} \frac{\Delta \vec{r}}{\Delta s}$$

- Two observations can be made:
 - As Δs approaches zero, $\Delta \vec{r}$ tends to the length of the arc length Δs .
- Therefore, $d\vec{r}/ds$ is a "unit vector"
- As Δs approaches zero, the vector $\Delta \vec{r}$ becomes **tangent to the path of P**
- From this, we conclude that $d\vec{r}/ds = \hat{e}_t$ = unit vector that is tangent to the path of P:

$$\vec{v} = v \hat{e}_t$$



Path description's *acceleration vector* derivation

$$\begin{aligned}
 \vec{a} &= \frac{d\vec{v}}{dt} \\
 &= \frac{d}{dt} (v\hat{e}_t) \\
 &= \frac{dv}{dt}\hat{e}_t + v\frac{d\hat{e}_t}{dt} \quad (\text{product rule of differentiation}) \\
 &= \dot{v}\hat{e}_t + v\frac{d\hat{e}_t}{ds}\frac{ds}{dt} \quad (\text{chain rule of differentiation}) \\
 &= \dot{v}\hat{e}_t + v^2\frac{d\hat{e}_t}{d\theta}\frac{d\theta}{ds} \quad (\text{chain rule of differentiation and } v = \frac{ds}{dt})
 \end{aligned}$$

path turning LEFT

$$\begin{aligned}
 \hat{e}_n &= -\sin\theta \hat{i} + \cos\theta \hat{j} \\
 \hat{e}_t &= \cos\theta \hat{i} + \sin\theta \hat{j} \quad \Rightarrow \\
 \frac{d\hat{e}_t}{d\theta} &= -\sin\theta \hat{i} + \cos\theta \hat{j} = \hat{e}_n \\
 ds = +\rho d\theta &\quad \Rightarrow \quad \frac{d\theta}{ds} = \frac{1}{\rho} \\
 \therefore \frac{d\hat{e}_t}{d\theta} \frac{d\theta}{ds} &= \frac{\hat{e}_n}{\rho}
 \end{aligned}$$

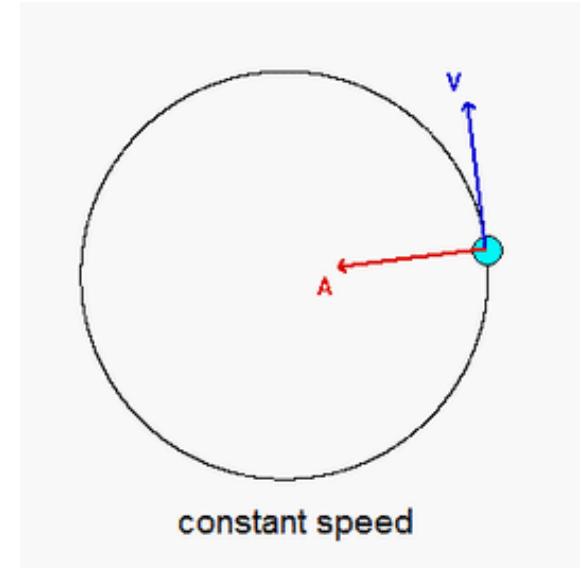
- We take the derivative of the velocity vector (in path description) and get...

$$\vec{a} = \dot{v}\hat{e}_t + \frac{v^2}{\rho}\hat{e}_n$$

[pg. 34-35 content]

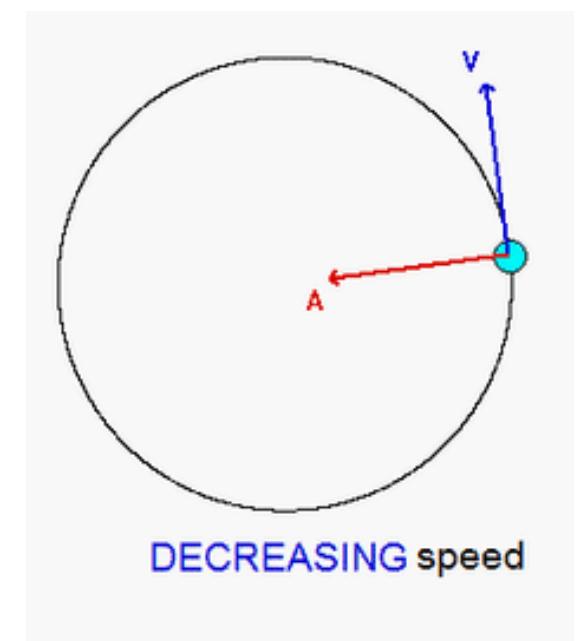
Path description – things to note

The velocity of a point is **ALWAYS** tangent to the path of the point. The magnitude of the velocity vector is known as the scalar “speed” v of the point.



The acceleration of the point has two components:

- The component $(v^2/\rho) \hat{e}_n$ is *normal* to the path. This is commonly referred to as the “centripetal” component of acceleration. This component is **ALWAYS** directed inward to the path (*positive n-component*) since $v^2/\rho > 0$.
- The component $v\hat{e}_t$ is tangent to the path. The magnitude of this component is the “rate of change of speed” \dot{v} for the point.
 - * When $\dot{v} > 0$ (increasing speed), the acceleration vector has a *positive t-component* (i.e., forward of \hat{e}_n).
 - * When $\dot{v} = 0$ (constant speed), the acceleration vector has a *zero t-component* (i.e., \vec{a} is aligned with \hat{e}_n). Note that constant speed does NOT imply zero acceleration!
 - * When $\dot{v} < 0$ (decreasing speed), the acceleration vector has a *negative t-component* (i.e., backward of \hat{e}_n). See figure below.



Path description – things to note (cont.)

- The magnitude of the acceleration is given by the square root of the sum of the squares of its path components:

$$|\vec{a}| = \sqrt{\dot{v}^2 + (v^2/\rho)^2}$$

- The magnitude of acceleration $|\vec{a}|$ accounts for both the tangential and normal components of acceleration, as shown in the above equation.

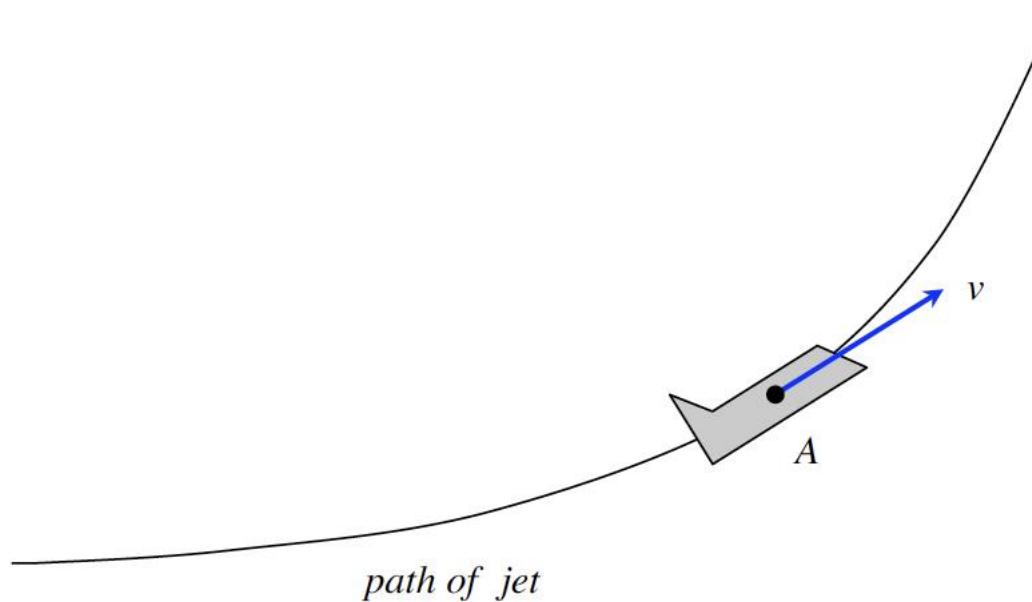
Do not confuse the terms “rate of change of speed” and “magnitude of acceleration”:

- Rate of change of speed \dot{v} (as the name indicates) is the rate at which the speed changes in time; it is simply the tangential component of acceleration.

Example 1.A.3

Given: A jet is flying on the path shown below with a speed of v . At position A on the loop, the speed of the jet is $v = 600$ km/hr, the magnitude of the acceleration is $2.5g$ and the tangential component of acceleration is $a_t = 5$ m/s 2 .

Find: The radius of curvature of the path of the jet at A.



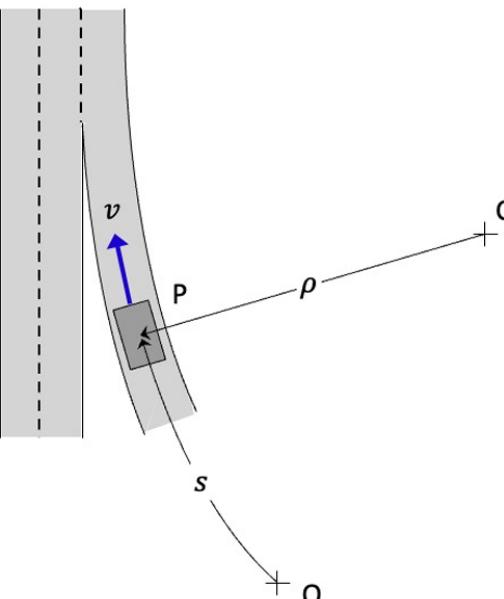
[pg. 43]

Additional lecture Example 1.1

Given: An automobile P is entering a freeway along a "clothoid-shaped" entrance ramp whose radius of curvature ρ is given by $\rho = (a + bs)^{-1}$, where a and b are constants, and s is the distance traveled along the entrance ramp. The speed of P is known as a function of position s on the entrance ramp to be: $v(s) = c + ds$, where c and d are constants.

Find:

- Determine the velocity and acceleration vectors for P. Express these vectors in terms of their path coordinates, and in terms of, at most: s , a , b , c and d .
- Determine the numerical values of the velocity and acceleration vectors for P at the position at $s = 200$ ft.
- Make a sketch of these velocity and acceleration vectors, including the path unit vectors \hat{e}_t and \hat{e}_n .



Use the following parameters in your work: $a = 0.005/\text{ft}$, $b = 1 \times 10^{-5}/\text{ft}^2$, $c = 25 \text{ ft/s}$ and $d = 0.25/\text{s}$.

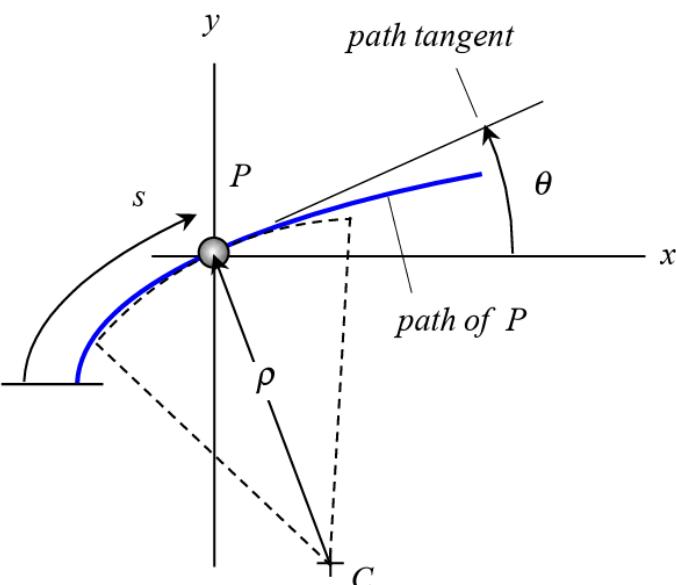
[Additional
Book Example
for today]

Additional lecture Example 1.2

Given: Particle P moves along a path with its position on the path given by the arc length of s . The speed of P is given as a function of s as: $v_P = bs^2$, where s is given in meters and v_P in terms of meters/second. The radius of curvature of the path is given by ρ and the path tangent is at an angle of θ with respect to the direction of the x -axis.

Find: At the position of P where $s = 3$ m:

- Make a sketch of the path unit vectors \hat{e}_t and \hat{e}_n .
- Determine the velocity and acceleration of P in terms of path unit vectors \hat{e}_t and \hat{e}_n .
- Determine the velocity and acceleration of P in terms of Cartesian unit vectors \hat{i} and \hat{j} .
- Determine the xy -components of location of the center of curvature, C, for the path.



Use the following parameters in your work: $b = 0.5/\text{m}\cdot\text{s}$, $\rho = 5$ m and $\theta = 30^\circ$.

[Additional
Book Example
for today]

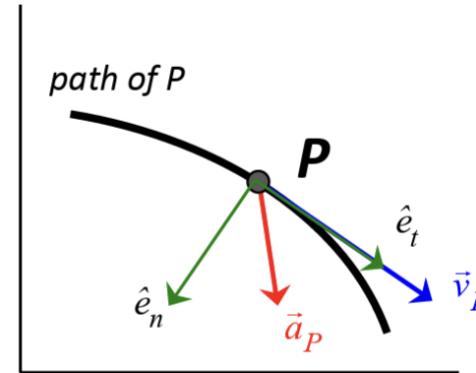
Summary: Particle Kinematics – Path Description

1. **PROBLEM:** Motion of a point described in path variables.

2. **FUNDAMENTAL EQUATIONS:**

$$\vec{v}_P = v_P \hat{e}_t = \text{velocity of } P \quad [\text{pg. 33}]$$

$$\vec{a}_P = \dot{v}_P \hat{e}_t + \frac{v_P^2}{\rho} \hat{e}_n = \text{acceleration of } P \quad [\text{pg. 35}]$$



where \hat{e}_t and \hat{e}_n are unit vectors tangent and (inwardly) normal to the path.

3. **OBSERVATIONS:** *In regard to the path description kinematics, we see*

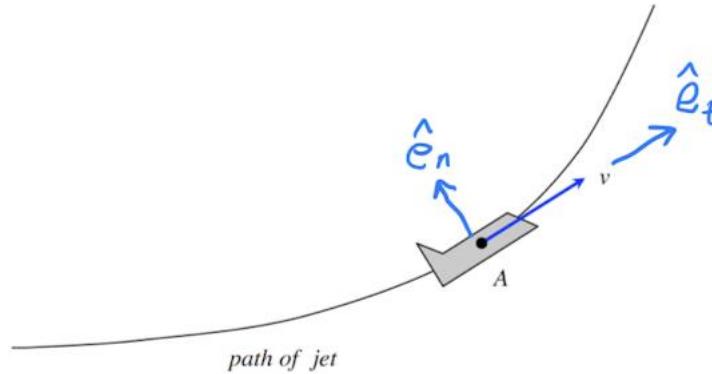
- Velocity is **ALWAYS** tangent to the path. [pg. 36]
- Acceleration, in general, has **BOTH** normal and tangential components. [pg. 36 & challenge q on 37]
- Note that acceleration depends on three factors: speed v_P , rate of change of speed \dot{v}_P and radius of curvature of the path ρ . [pg. 37]
- Rate of change of speed is the projection of acceleration onto the unit tangent vector: $\dot{v}_P = \vec{a}_P \cdot \hat{e}_t$
- Rate of change of speed is **NOT** equal to the magnitude of acceleration:

$$|\vec{a}_P| = \sqrt{\dot{v}_P^2 + (v_P^2 / \rho)^2} \neq |\dot{v}_P| \quad [\text{pg. 37}]$$

Given: A jet is flying on the path shown below with a speed of v . At position A on the loop, the speed of the jet is $v = 600$ km/hr, the magnitude of the acceleration is $2.5g$ and the tangential component of acceleration is $a_t = 5$ m/s 2 .

Find: The radius of curvature of the path of the jet at A.

$\hat{e}_{\text{tangent}} = \hat{e}_t$
 $\hat{e}_{\text{normal}} = \hat{e}_n$
 $\lambda = \text{unit vector}$
 $\vec{s} = \text{vector}$



$$\begin{aligned}\vec{a} &= \dot{v}\hat{e}_t + \frac{v^2}{\rho}\hat{e}_n \\ &= a_t\hat{e}_t + \frac{v^2}{\rho}\hat{e}_n\end{aligned}$$

$$|\vec{a}|^2 = a_t^2 + \frac{v^4}{\rho^2}$$

$$\rho = \sqrt{\frac{v^4}{|\vec{a}|^2 - a_t^2}}$$

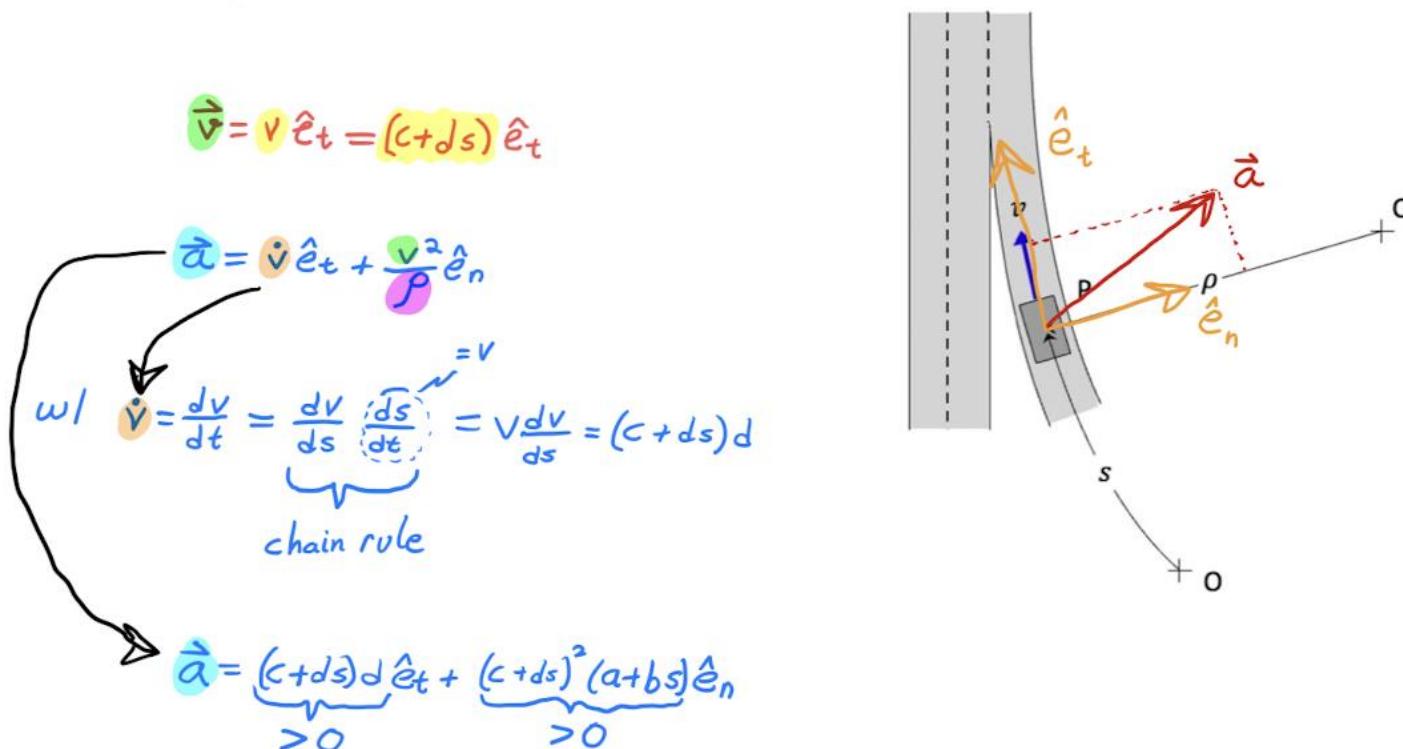
Additional lecture Example 1.1 In course website

Given: An automobile P is entering a freeway along a "clothoid-shaped" entrance ramp whose radius of curvature ρ is given by $\rho = (a + bs)^{-1}$, where a and b are constants, and s is the distance traveled along the entrance ramp. The speed of P is known as a function of position s on the entrance ramp to be: $v(s) = c + ds$, where c and d are constants.

Find:

- Determine the velocity and acceleration vectors for P. Express these vectors in terms of their path coordinates, and in terms of, at most: s , a , b , c and d .
- Determine the numerical values of the velocity and acceleration vectors for P at the position at $s = 200$ ft.
- Make a sketch of these velocity and acceleration vectors, including the path unit vectors \hat{e}_t and \hat{e}_n .

Use the following parameters in your work: $a = 0.005/\text{ft}$, $b = 1 \times 10^{-5}/\text{ft}^2$, $c = 25 \text{ ft/s}$ and $d = 0.25/\text{s}$.



Additional lecture Example 1.2 In course website

Given: Particle P moves along a path with its position on the path given by the arc length of s . The speed of P is given as a function of s as: $v_p = bs^2$, where s is given in meters and v_p in terms of meters/second. The radius of curvature of the path is given by ρ and the path tangent is at an angle of θ with respect to the direction of the x -axis.

Find: At the position of P where $s = 3$ m:

- Make a sketch of the path unit vectors \hat{e}_t and \hat{e}_n .
- Determine the velocity and acceleration of P in terms of path unit vectors \hat{e}_t and \hat{e}_n .
- Determine the velocity and acceleration of P in terms of Cartesian unit vectors \hat{i} and \hat{j} .
- Determine the xy -components of location of the center of curvature, C, for the path.

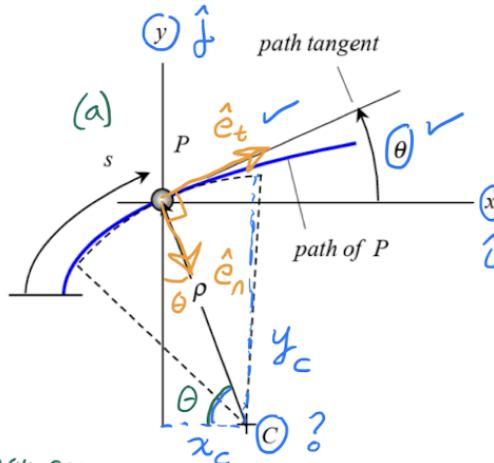
Use the following parameters in your work: $b = 0.5$ m-s, $\rho = 5$ m and $\theta = 30^\circ$.

$$(b) \checkmark \vec{v}_p = v_p \hat{e}_t = (bs^2) \hat{e}_t$$

$$\checkmark \vec{a}_p = \dot{v}_p \hat{e}_t + \frac{\vec{v}_p^2}{\rho} \hat{e}_n \\ = v_p \hat{e}_t + \frac{(bs^2)^2}{\rho} \hat{e}_n$$

$$w/ \quad \dot{v}_p = \frac{dv_p}{dt} = \frac{dv_p}{ds} \frac{ds}{dt} = v_p \frac{dv_p}{ds} ; \text{chain rule} \\ = (bs^2)(2bs) \\ = 2b^2s^3 \\ = \underline{\underline{\quad}}$$

(c)
 From Figure: $\hat{e}_t = \cos\theta \hat{i} + \sin\theta \hat{j}$
 $\hat{e}_n = \sin\theta \hat{i} - \cos\theta \hat{j}$



$$\therefore \vec{v}_p = bs^2(\cos\theta \hat{i} + \sin\theta \hat{j}) \quad \leftarrow (c)' s \vec{v}_p$$

$$\vec{a}_p = 2b^2s^3(\cos\theta \hat{i} + \sin\theta \hat{j}) + \frac{(bs^2)^2}{\rho}(\sin\theta \hat{i} - \cos\theta \hat{j}) \\ = [2b^2s^3 \cos\theta + \frac{(bs^2)^2}{\rho} \sin\theta] \hat{i} + [2b^2s^3 \sin\theta - \frac{(bs^2)^2}{\rho} \cos\theta] \hat{j} \quad \leftarrow (c)' s \vec{a}_p$$

$$(d) x_c = \rho \sin\theta, y_c = -\rho \cos\theta$$