

Example 1.A.1

Given: Pin P is constrained to move along a elliptical ring whose shape is given by $x^2/a^2 + y^2/b^2 = 1$ (where x and y are given in mm). The pin is also constrained to move within a horizontal slot that is moving upward at a constant speed of v .

Find: Determine:

- The velocity of pin P at the position corresponding to $y = 6$ mm; and
- The acceleration of pin P at the position corresponding to $y = 6$ mm.

Use the following parameters in your analysis: $a = 5$ mm, $b = 10$ mm, $v = 30$ mm/s.

fund. Eqn.

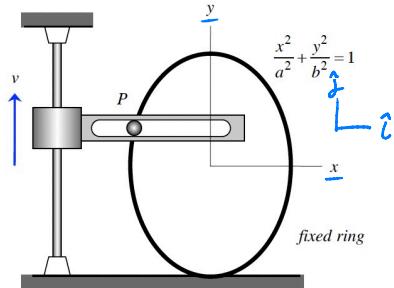
$$\vec{v} = \dot{x}\hat{i} + \dot{y}\hat{j} ; \quad \vec{a} = \ddot{x}\hat{i} + \ddot{y}\hat{j}$$

$$\dot{y} = v ; \ddot{y} = 0$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \rightarrow x \text{ solve for}$$

$$\Rightarrow \frac{d}{dt} \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} \right) = 1$$

$$\frac{dx^2}{dx} \frac{dx}{dt} + \frac{dy^2}{dy} \frac{dy}{dt} \leftarrow \text{chain rule pg. 33}$$



$$\Rightarrow \frac{2x\dot{x}}{a^2} + \frac{2y\dot{y}}{b^2} = 0$$

$$\Rightarrow 2x\dot{x}b^2 + 2y\dot{y}a^2 = 0$$

$$\Rightarrow \cancel{2x\dot{x}b^2} + \cancel{2y\dot{y}a^2} = 0 \Rightarrow \dot{x} \text{ solve for}$$

$$\cancel{\dot{x}^2b^2} + \cancel{x\ddot{x}b^2} + \cancel{\dot{y}^2a^2} + \cancel{y\ddot{y}a^2} = 0 \Rightarrow \ddot{x} \text{ solve for}$$

GIVEN

Example 1.A.2

Given: A particle P moves on a path whose Cartesian components are given by the following functions of time (where both components are given in inches and time t is given in seconds):

$$x(t) = t^3 + 10$$

$$y(t) = 2 \cos 4t$$

Find: Determine at the time $t = 2$ s:

- The velocity vector of P;
- The acceleration of P; and
- The angle between the velocity and acceleration vectors of P.

Fundamental Equations

(a) $\vec{v} = \dot{\vec{x}} = \dot{x}\hat{i} + \dot{y}\hat{j}$; (b) $\vec{a} = \ddot{\vec{x}} = \ddot{x}\hat{i} + \ddot{y}\hat{j}$

$$x(t) = t^3 + 10$$

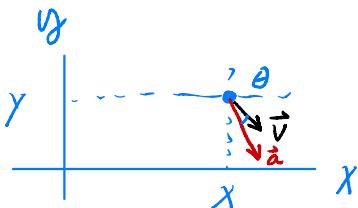
$$\dot{x} = 3t^2$$

$$\ddot{x} = 6t$$

$$y(t) = 2 \cos 4t$$

$$\dot{y} = -2(4) \sin 4t = -8 \sin 4t$$

$$\ddot{y} = -32 \cos 4t$$



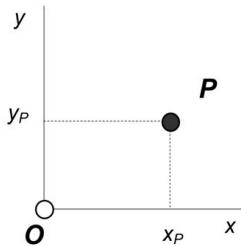
Remember... dot products

$$\vec{v} \cdot \vec{a} = |\vec{v}| |\vec{a}| \cos \theta$$

$$\theta = \cos^{-1} \left(\frac{\vec{v} \cdot \vec{a}}{|\vec{v}| |\vec{a}|} \right) = \cos^{-1} \left(\frac{\dot{x}\ddot{x} + \dot{y}\ddot{y}}{\sqrt{\dot{x}^2 + \dot{y}^2} \sqrt{\ddot{x}^2 + \ddot{y}^2}} \right)$$

Question C1.2

Point P moves on a path described by $y_P = x_P^2/2$ with $x_P(t) = 3 \sin \pi t$, where x_P and y_P have units of meters and t has units of seconds. Determine the acceleration vector of P at $t = 0$.



$$\dot{y}_P = \frac{dy_P}{dt} = \frac{dy_P}{dx} \frac{dx}{dt} = \frac{dy_P}{dx} \dot{x}$$

(chain rule)

$$\ddot{y}_P = \frac{d \dot{y}_P}{dt} = \ddot{x} \frac{dy_P}{dx} + \dot{x} \frac{d}{dt} \left(\frac{dy_P}{dx} \right)$$

(product rule)

$$= \ddot{x} \frac{dy_P}{dx} + \dot{x}^2 \frac{d^2 y_P}{dx^2}$$

$$\vec{a} = \ddot{x} \hat{i} + \ddot{y} \hat{j}$$

For \hat{i} :

$$\dot{y}_P = x_P$$

$$\ddot{y}_P = 1$$

For \hat{j} :

$$\dot{x} = 3\pi \cos(\pi t)$$

$$\ddot{x} = -3\pi^2 \sin(\pi t)$$

we take derivative of $\frac{dy_P}{dx}$ which is $\frac{d^2 y_P}{dx^2}$ on numerator but we do " $\frac{dx}{dx^2} \frac{dy}{dx}$ " to keep terms of dt

Evaluate at $t=0$:

$$x(0) = 0, \dot{x}(0) = 3\pi, \ddot{x}(0) = 0$$

Evaluate $\ddot{y}(0)$:

$$\ddot{y}(0) = \dot{x}(0) \dot{x}(0) + \dot{x}(0)^2 (1) = 0 \cdot 0 + (3\pi)^2 = 9\pi^2$$

$$\vec{a}(0) = 0 \hat{i} + 9\pi^2 \hat{j} \text{ m/s}^2$$