
Shear force/bending moment diagrams for indeterminate beams

Example 1

Consider the propped-cantilevered beam shown, with the roller support at location C along the beam. The beam is made up of a material having a Young's modulus of E, with the beam having a $(b \times b)$ square cross-section, where a = 10b. A constant line lone p_0 acts along the length of the beam, and a concentrated load P acts at end H, where $P = 2p_0a$.

- a) Using either integration techniques, Castigliano's theorem or superposition, determine the support reactions on the beam at B, C and H. If Castigliano's theorem is used, consider the contributions from shear to be negligible.
- b) Draw the shear force V(x) and bending moment M(x) diagrams in the plot axes provided.
- c) Determine the maximum flexural stress in the beam.

Leave your answers in terms of, at most: a, E and p_0 .

