\qquad

Problem 1 (20 points)
A person is rolling a wheel with an outer radius of R on a flat ground. A constant force F is applied to the wheel, with its direction tangent to the wheel, and with the angle between the horizontal and the radial line at the force location is ϕ. The direction and acting position of the force F is not changing with time (i.e., $\boldsymbol{\phi}$ is constant during the process). The wheel is rolling without slipping at the contact point C. The mass of the wheel is m and the mass moment of inertia about its center of mass G is I_{G}.

Follow the solution steps below to find the acceleration of G and the angular velocity of the wheel at a prescribed instant in time.

Please use the following values in the calculation for the questions below: $F=160 \mathrm{~N}, \phi=30^{\circ}$, $R=0.5 \mathrm{~m}, I_{G}=4 \mathrm{~kg} \cdot \mathrm{~m}^{2}, m=32 \mathrm{~kg}$

SOLUTION

(a) Draw free body diagram on the figure below

Problem 1 (continued)
(b) Find acceleration of the wheel center G. Express the answer in vector form using the coordinates given in the figure in Part (a).

Newton: $\sum F_{x}=m a_{q}: F \sin \phi+f=m a_{G}$
Enter: method D: choose G :

$$
\sum \bar{M}_{G}=I_{G} \bar{Q}^{-1}:-F R+f R=I_{G} Q
$$

method (2), Chooses C :

$$
\begin{aligned}
& \quad=\vec{M}_{C}^{\prime}=I \vec{\alpha}^{-1},-F \sin \phi(R+R \operatorname{siq})-F \cos \phi R \cos \phi=I_{c} \alpha \\
& \text { Kinematics: } \quad \vec{I}_{c}=I_{G}+m R^{2} \\
& \quad \vec{a}_{G}: \vec{a}_{c}+\overrightarrow{2}^{-1} \times \vec{r}_{G / L}^{\prime}-\omega^{2} \vec{r}_{G / L} \\
& \quad a_{G}=-R \alpha
\end{aligned}
$$

$$
\begin{array}{rl}
\text { Solve : } & \alpha=\frac{-k R(1+\sin \psi)}{I_{G}+m R^{2}}=-10 \mathrm{rad} / \mathrm{s}^{2} \\
a_{G}=-k \alpha=5 \mathrm{~m} / \mathrm{s}^{2} & f=\mu a_{G}-F \cdot \sin \phi=80 \mathrm{~N}
\end{array}
$$

(c) At the initial time of $t=0$, the wheel is at rest. Find the wheel's angular speed ω at $t=5$

Methods. 10 : $\omega_{2}=0+\int_{0}^{5} \alpha d t=-50 \mathrm{rad} / \mathrm{s}$
method (2): $U_{2}=0+\int_{0}^{5} a_{G} d t=25 \mathrm{~m} / \mathrm{s}$
kinematics: $U=-R \cdot \omega \Rightarrow \omega_{2}=-\frac{V_{2}}{R}=-50 \mathrm{rad} / \mathrm{s}$
method (3): Angubr momentionn, choose C :

$$
\begin{aligned}
& H_{2}=0+\int_{0}^{5} M_{c} d t=\int_{0}^{5}-F R(1+\sin \phi) d t=-120 \times 5=-600 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s} \\
& W_{2}=\frac{H_{2}}{I_{c}}=-50 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

method (4): Angular mo mentumn: close G :

$$
\begin{aligned}
& H_{2}=0+\int_{0}^{5} M_{G} d t=\int_{0}^{5}(-F R+f R) d t=-40 \times 5=-200 \mathrm{~kg} \mathrm{~m} / \mathrm{s} \\
& W_{2}=\frac{H_{L}}{I_{G}}=-50 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

method (5): linear momentum: $m V_{2}=0+\int_{0}^{5}(F \sin \phi+f) d t=160 \times 5=800 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$

$$
\Rightarrow V_{2}=25 \mathrm{~m} / \mathrm{s} \quad \Rightarrow \quad W_{L}=-\frac{V_{2}}{R}=-50 \mathrm{rad} / \mathrm{s}
$$

Problem 2 (20 points)

Given: A homogeneous pulley (having a mass m and outer radius R) is supported by a cable. A block C with mass $2 m$ is connected to the pulley with a rope at point O. The height difference between the pulley and block is h. The block is connected to the spring with a stiffness of k and negligible mass. The system is released from rest with the spring initially unstretched (State 1) with a constant force F applied to end of the cable. Assume that the cable does not slip on the pulley. The figure shows the system at State 1.

Find: Follow the solution steps below to determine the angular velocity ω of the pulley after point O has moved up a distance of d (State 2). Express your answer in terms of, at most m, h, d, R, k and the gravitational constant g. Write
 your answer as a vector.

Solution

Step 1: FBD

Use the spaces below to draw the FBD for the system consisting of both the pulley and the block. Your FBD must indicate the relevant coordinates.

Final Exam - April 29

Step 2 Kinetics:
Write down the work energy equation for the system based on the FBD in Step 1. Please use the provided datum. You may define and use any new unknown variables needed in Step 2 to express the following terms.

$T_{1}=$	$0 \quad j I \cdot A \cdot R$
$V_{1}=$	$-2 m g h$
$U_{1 \rightarrow 2}^{N C}=$	$F \Delta_{4}$
$T_{2}=$	$\frac{1}{2} I_{B} W^{2}+\frac{1}{2}(2 m) V_{0}^{2}$ [vote: BIc of pulley]
$V_{2}=$	$m g d+2 m g(d-n)+\frac{1}{2} R \Delta_{0}^{2}$

$\omega / I_{B}=I_{0}+m R^{2}=\frac{1}{2} m R^{2}+m R^{2}=\frac{3}{2} m R^{2}$

Step 3 Kinematics:
Write down the kinematics equations that are needed to solve this problem.
Since $B=$ IC of pulley:
(1) $\quad v_{0}=R \omega \Rightarrow \Delta_{0}=R \theta=d$
(2) $V_{E}=2 R \omega=2 V_{0} \Rightarrow \Delta_{A}=\Delta_{E}=2 d$

ME 274: Basic Mechanics II - Spring 2024
Final Exam - April 29

Problem 2 (continued)
Step 4 Solve:
Using the equations from Steps 2 and 3 above, solve for the angular velocity ω of the pulley. Your answers should be in terms of, at most: m, h, d, R, k and g. Write your answer as a vector.

Substitute (1) and (2) into WIE equation:

$$
\begin{aligned}
b_{1}+V_{1}+V_{1 \rightarrow 2} n & =T_{2}+V_{2} \\
-2 m g h+F(2 d) & =\frac{1}{2} I_{c} \omega^{2}+\frac{1}{2}(2 m)(R \omega)^{2}+2 m g(d-h i)+\frac{1}{2} R \Delta_{0}^{2} \\
& =\underbrace{\left[\frac{1}{2}\left(\frac{3}{2} m R^{2}\right)+m R^{2}\right]}_{\frac{7}{4} m R^{2}} \omega^{2}+3 m g d+\frac{1}{2} R d^{2}
\end{aligned}
$$

$$
\zeta \stackrel{\rightharpoonup}{\omega}=-\left[\frac{(2 F-3 m g) d-\frac{1}{2} k d^{2}}{\frac{7}{4} m R^{2}}\right] \hat{k}
$$

Problem 3 (20 points)

Given: Consider the system described below. It is comprised of a disk and a lumped mass, each with mass m and with the disk having a radius R. The disk and the lumped mass are interconnected via a rigid, massless link at points A and G, respectively. The relevant dimensions of the link are given on the figure. Attached to the disk at point G is a spring with a stiffness of $2 k$. Additionally, a damper with a damping coefficient c is connected to the lumped mass m. The disk rolls without slip, while the lumped mass slides along a smooth surface. The mass moment of inertia of a disk about its center of gravity is $I_{G}=$ $(1 / 2) m R^{2}$. The displacement of the center of the disk G is x.

The known variables are k, c, m, L, R.

Find: The equation of motion of the system by completing the following steps.

Solution:

a) Draw FBDs of the disk, the massless link, and lumped mass on the figures provided.

\qquad

Problem 3 (continued)
b) Write down the relevant Newton-Euler equations for each FBD.

$$
\begin{aligned}
& \text { Disk } \\
& \rightarrow \sum F_{x}: F_{A 6} \cos \theta-f-2 k x=m \ddot{x} \\
& +\Gamma \text { Soy: } \quad F_{A C \sin \mathbb{O}}-m g+N=0 \\
& 0 . \sum m_{6}:+f R=I_{G} \ddot{\theta}, I_{\sigma}=1 / 2 m n^{2} \text { or } r \Sigma m_{c}:-2 k x R+I_{n} \cos \theta R=I_{c} \ddot{\theta} \\
& I_{C}=1 / 2 m R^{2}+m R^{2}=3 / 9 m R^{2}
\end{aligned}
$$

Block

$$
\begin{aligned}
& \stackrel{\text { Block }}{\xrightarrow{\leftrightarrows}} \sum F_{z}:-c i-F_{A 6} \cos \theta=m \dot{z} \\
& A \sum F_{y}:-N_{1}+m-N_{2}-F_{A 6} \sin \theta
\end{aligned}
$$

Required (1), (2), (3) or (3) and (4)
c) Use kinematics to establish the relationship between the angular displacement, angular velocity, and angular acceleration of the disk and the translational displacement, translational velocity, and translational acceleration of the disk's center of gravity G, respectively.
assuming (0) i clockwise is positive

$$
\begin{aligned}
& x=R O \\
& \dot{x}=R \dot{\theta} \\
& \ddot{x}=R \ddot{\theta}
\end{aligned}
$$

d) State the relationship between the displacement, velocity and acceleration of the lumped mass and the disk's center of gravity.

$$
\begin{aligned}
& x=z \\
& \dot{x}=z \\
& \ddot{x}=z
\end{aligned}
$$

Problem 3 (continued)
e) Use the equations in parts (a), (b), (c), and (d) to derive the differential equation of motion (EOM) of the center of the disk G. This EOM should be written in terms of, at most, the known variables along with x, \dot{x} and \ddot{x}. Put this equation in standard form with the coefficient of \ddot{x} equal to one.

The easiest path to the EOM

$$
\begin{aligned}
& F^{\prime} \sum m_{C}:-2 k x R+F_{A 6} \cos \theta R=3 / m R^{2} \ddot{\theta} \\
& +\Sigma F_{2}:-c i-F_{A G} \cos \theta=m \ddot{Z}^{\prime} \\
& \rightarrow F_{z}
\end{aligned}
$$

divide $\sum M_{C}$ by R and add to $\sum F_{Z}$

$$
-2 k x-c \dot{x}=3 / 2 m \ddot{x}+m \ddot{x}
$$

Rearrange

$$
5 / b m \ddot{x}+c \dot{x}+2 k x=0
$$

f) Use the equation of motion in part (e) to determine the undamped natural frequency $\left(\omega_{n}\right)$ and damping ratio (ζ) for this system. These should be expressed in terms of, at most, the known variables.

$$
\ddot{x}+\sum_{23 \omega n}^{\frac{2}{5} \frac{c}{m}} \dot{x}+\frac{4 k}{\frac{4 m}{w_{n}^{2}}} x=0
$$

Natural Frequency:

$$
w_{n}=\sqrt{\frac{4}{5} k / m}
$$

Damping Ratio: $23 \mathrm{un}_{\mathrm{n}}=2 / \mathrm{s} / \mathrm{m} \longrightarrow 3 \mathrm{um}_{\mathrm{n}}=\mathrm{C} / \mathrm{sm}$

$$
\begin{aligned}
& \xi=\frac{c}{\sin }=\frac{c}{5 m \sqrt{4 / k} / m}=\frac{c}{\frac{10}{\sqrt{5}} \sqrt{m k}}=\frac{c}{\frac{\sqrt{5} \cdot 10 \sqrt{m k}}{\sqrt{5} \sqrt{5} \rightarrow 5}} \\
& \xi=\frac{c}{2 \sqrt{5} \sqrt{m k}}
\end{aligned}
$$

Problem 4 (20 points)

Part A (3 points)

Given: Two cars are approaching an intersection at constant speeds $\vec{v}_{A}=v \hat{\imath}$ and $\vec{v}_{B}=-2 v j$ respectively as depicted in the figure. (No partial credit)
Find:
a) In the coordinate axes to the right, sketch the vectors \vec{v}_{A} and \vec{v}_{B}.
b) Write the velocity that car B will appear to have to an observer in car A in vector form, and sketch it in the coordinate axes to the right.

$$
\begin{aligned}
\bar{v}_{B / A}= & \vec{v}_{B}-\bar{v}_{A}=-2 v \hat{\jmath}-v \hat{\imath} \\
& v_{B / A}=-v \hat{\imath}-2 v \hat{\jmath}
\end{aligned}
$$

-

Part B (3 points)

Given: The mechanism shown in the figure consists of links $O A, A B$, and $B E$. Link $O A$ is rotating counterclockwise at a rate $\omega_{O A}$. (No partial credit)
Find:

c) Is link BE rotating clockwise, counterclockwise, or not rotating at this instant?
clockwise
d) Each of the three links has a mass of m, with the lengths of the links shown in the figure. Write expressions for the angular momentum of link OA about point $\mathrm{O},\left(\vec{H}_{O}\right)_{O A^{\prime}}$ and link BE about point $\mathrm{E},\left(\vec{H}_{E}\right)_{B E^{\prime}}$ at the instant shown. Use $m, L_{O A}, L_{B E}, \theta, \omega_{O A}$, and $\omega_{B E}$.

$$
\begin{aligned}
& \left(\vec{H}_{O}\right)_{O A}=I_{O} \vec{w}_{O A}=\left(I_{G}+m\left(\frac{L O A}{2}\right)^{2}\right) \bar{w}_{O A}=\left(\frac{1}{12} m L_{O A}^{2}+\frac{1}{4} m L_{A}^{2}\right) \bar{w}_{O A} \\
& \left(\vec{H}_{0}\right)_{O A}=\frac{1}{3} m L_{O A}^{2} \omega_{O A} \hat{k} \\
& \left(\vec{H}_{E}\right)_{B E}=I_{E} \vec{W}_{B E}=\left(I_{G}+m\left(\frac{L_{B E}}{2}\right)^{2}\right) \bar{U}_{B E}=\left(\frac{1}{12} m L_{B E}^{2}+\frac{1}{4} m L_{B E}^{2}\right) \bar{w}_{B E} \\
& (\overrightarrow{H E})_{B E}=-\frac{1}{3} m L_{B E}^{2} \omega_{B E} \hat{k}
\end{aligned}
$$

\qquad SOLUTON

Part C (2 points)

Given: A particle P moves along a smooth semicircular slot of radius $R=1 \mathrm{~m}$ in the vertical plane as depicted in the figure. At the instant shown, $\theta=30^{\circ}$ and the particle speed is $v=2$ m / s. Use $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Find: Select the correct statement for the instant shown:
(a) P is in contact with the inner surface of the slot
b) P is in contact with the outer surface of the slot
c) P is not in contact with any surface
d) There is not enough information to determine if P is in contact with a surface.

$F B D$

$$
\begin{array}{r}
\nu \sum F_{n}=-N+m g \sin \theta=m \vec{a}_{n}=m \frac{v^{2}}{\rho} \\
N=m\left(g \sin \theta-\frac{v^{2}}{R}\right)>0
\end{array}
$$

\qquad

Part D(2 points)

Given: Smooth particles A and B impact each other as shown in the figure, with a coefficient of restitution $0<e<1$. All motion happens on a smooth horizontal plane.

Find: Circle ALL the correct responses below. (No partial credit)
a) For system made up of \boldsymbol{A} alone during impact:
i) linear momentum in the x-direction is conserved
ii) linear momentum in the y-direction is conserved
iii) linear momentum in the n-direction is conserved

(iv) linear momentum in the t-direction is conserved
v) energy is conserved
b) For system made of A and B during impact:
(i) linear momentum in the x-direction is conserved
(ii) linear momentum in the y-direction is conserved
iii) linear momentum in the n-direction is conserved
(iv) linear momentum in the t-direction is conserved
v) energy is conserved

Part E (4 points)

Given: The vertical shaft OA rotates about a fixed axis with a constant rate Ω. The arm $A B$ is pinned to $O A$ and is being raised at a constant rate $\dot{\theta}$. An observer and the $x y z$ axes are attached to AB. The $X Y Z$ axes are stationary. (No partial credit)

Find:
a) What is the angular velocity vector for arm AB ($x y z$ axes) when $\theta=90^{\circ}$?

$$
\vec{\omega}=-\Omega \hat{j}+\dot{\theta} \hat{k}=-\Omega \hat{\jmath}+\dot{\theta} \hat{k}
$$

b) What is the angular acceleration vector for arm AB ($x y z$ axes) when $\theta=90^{\circ}$?

$$
\begin{aligned}
\vec{\alpha} & =\frac{d}{d t}(\vec{\omega})=-\dot{\Omega} \hat{\jmath}^{0}-\Omega \hat{\jmath}+\ddot{\theta} k+\dot{\theta} \dot{k}=\dot{\theta}(\vec{\omega} \times \hat{k})=\dot{\theta}(-\Omega \dot{\jmath}+\dot{\theta} \hat{k}) \times \hat{k} \\
& =\dot{\theta}(-\Omega \hat{\jmath}+\dot{\theta} \hat{k}) \times \hat{k}=-\Omega \dot{\theta} \hat{\imath}
\end{aligned}
$$

\qquad

Part F (6 points)
Given: A homogeneous disk (mass m and radius R) rolls without slipping on a rough horizontal surface. A spring (stiffness k) is attached between the disk center O and ground, as shown in the figure. Let x describe the position of O such that the spring is unstretched when $x=0$. (No partial credit)
Find:
a) Is energy conserved in the system? Justify why or
 why not.

No, due to the externally applied force $F(t)$
b) What is the natural frequency of the system, ω_{n} ?

$$
\begin{gathered}
H=M_{c}=R k x-R F(t)=-I_{c} \ddot{\theta} \\
R k x-R F(t)=-\frac{3}{2} m k^{2}\left(\frac{\ddot{x}}{2}\right) \\
\frac{3}{2} m \ddot{x}+k x=F_{0} \sin \omega t \\
\omega_{n}=\sqrt{\frac{2 k}{3 m}}
\end{gathered}
$$

$$
I_{c}=\left(I G+m R^{2}\right)=\frac{3}{2} m e^{2}
$$

c) What is the amplitude of the steady state response for this system $X(\omega)$?

$$
\begin{aligned}
& \ddot{x}+\frac{2 k}{3 m} x=\frac{2 F_{0}}{3 m} \sin \omega t \rightarrow \ddot{x}+\omega_{n}^{2} x=f_{0} \sin \omega t, f_{0}=\frac{2 F_{0}}{3 m} \\
& x_{p}(t)=A \sin \omega t+B \cos \omega t, \ddot{x} p(t)=-A \omega^{2} \sin \omega t-B \omega^{2} \cos \omega t
\end{aligned}
$$

$\left[-A \omega^{2} \sin \omega t-B \omega^{2} \cos \omega t\right]+\omega_{n}^{2}[A \sin \omega t+B \cos \omega t]=f_{0} \sin \omega t$

$$
\begin{aligned}
& \text { sinut: } A\left(\omega n^{2}-\omega^{2}\right)=f_{0} \rightarrow A=f_{0}\left(\omega n^{2}-\omega^{2}\right) \Rightarrow X(\omega)=\frac{f_{0}}{\omega n^{2}-\omega^{2}} \\
& \text { coswt: } B\left(\omega n^{2}-\omega^{2}\right)=0 \rightarrow B=0
\end{aligned}
$$

d) At what forcing frequency $\omega>0$ does the magnitude of the response $X(\omega)$ equal the magnitude of the response when $\omega=0$? That is, when is $|X(\omega)|=|X(0)|$?

$$
\begin{array}{r}
|X(0)|=\frac{f_{0}}{w n^{2}},|\chi(\omega)|=\frac{f_{0}}{\omega_{n}^{2}-\omega^{2}} \\
\frac{f_{0}}{\omega n^{2}}=\frac{f 0}{\omega n^{2}-\omega^{2}} \rightarrow\left|\omega_{n}^{2}-\omega^{2}\right|=\omega_{n}^{2} \\
\omega^{2}-\omega_{n}^{2}=\omega_{n}^{2} \\
\\
\omega^{2}=2 \omega_{n}^{2} \\
\\
\omega=\sqrt{2} \omega n
\end{array}
$$

