Homework H.6.A

Given: Two homogeneous wheels, having masses of m and $3 m$ and outer radii of r and $2 r$, respectively, are connected by a rigid, L-shaped bar, where the mass of the bar is negligible compared to the mass of the wheels. The two wheels roll without slipping on a rough, horizontal surface. Two springs, having stiffness of $4 k$ and k, connect points A and B , respectively, to ground, where A and B are the centers of the two wheels. The coordinate x gives the position of Point A measured from the position at which the two springs are unstretched, with x being measured positive to the right (as shown below).

Find: For this problem:
(a) Derive the single differential equation of motion (EOM) for the system in terms of the coordinate x; and
(i) Determine the natural frequency of free ose illation for ine systern.

Use the following parameters in your analysis: $m=20 \mathrm{~kg}, k=500 \mathrm{~N} / \mathrm{m}$, and $r=0.5 \mathrm{~m}$.

