Problem 1 (20 points)

Given: A block having a mass of $2 m$ is able to slide on a smooth, horizontal surface, as shown to the right. A thin, homogeneous bar having a mass of m and length L is pinned to the block at end O of the bar. End A of the bar is in contact with a smooth, vertical wall. The system is released from rest with bar OA being at an angle of θ from the horizontal.

Find: In this problem, you are asked to determine angular acceleration of bar OA. To this end, you need to
 respond to the following Steps 1-4 of the solution. Please provide your responses in the specified locations - otherwise, your work will be missed and not graded.

Solution

STEP 1: FBDS
Complete the individual free body diagrams (FBDs) of the block and of bar OA below.

STEP 2: Kinetics

STEP 2A: Using the $x y$-coordinate axes provided, write down the three Newton/Euler equations for bar OA from the FBD of the bar in STEP 1.
(1) $\sum F_{x}=-N_{A}+O_{x}=m a_{G x} \Rightarrow N_{A}=O_{x}-m a_{G x}$
(2) $\sum F_{x}=-m g+O_{y}=m a_{G y} \Rightarrow O_{y}=m g+m a_{G y}$
(3) $\sum M_{G}=-O_{y}(L / 2) \cos \theta+O_{x}(L / 2) \sin \theta+N_{A}(L / 2) \sin \theta=I_{G} \alpha \quad ; \quad I_{G}=(1 / 12) m L^{2}$

STEP 2B: Using the $x y$-coordinate axes provided, write down the two Newton's $2^{\text {nd }}$ Law equations for the block from the FBD of the block in STEP 1.
(4) $\sum F_{x}=-O_{x}=2 m a_{0} \Rightarrow O_{x}=-2 m a_{0}$
(5) $\sum F_{y}=-2 m g-O_{y}+N_{B}=0$

Problem 1 (continued)

Step 3: Kinematics

Write the kinematics equations that are needed to solve this problem.

$$
\begin{aligned}
\vec{a}_{O} & =\vec{a}_{A}+\vec{\alpha} \times \vec{r}_{O / A}-\omega^{2} \vec{r}_{O / A} \\
a_{O} \hat{\imath} & =a_{A} \hat{\jmath}+(\alpha \hat{k}) \times(-L \cos \theta \hat{\imath}-L \sin \theta \hat{\jmath}) \quad \Rightarrow \quad \\
& =(L \alpha \sin \theta) \hat{\imath}+\left(a_{A}-L \alpha \cos \theta\right) \hat{\jmath}: a_{O}=L \alpha \sin \theta \\
& \hat{\jmath}: 0=a_{A}-L \alpha \cos \theta
\end{aligned}
$$

Also,

$$
\left.\begin{array}{rl}
\vec{a}_{G} & =\vec{a}_{O}+\vec{\alpha} \times \vec{r}_{G / O}-\omega^{2} \vec{r}_{G / O} \\
& =L \alpha \sin \theta \hat{\imath}+(\alpha \hat{k}) \times(L \cos \theta \hat{\imath}+L \sin \theta \hat{\jmath}) / 2 \quad \Rightarrow \quad \begin{array}{l}
\text { (6) } a_{G x}=(L / 2) \alpha \sin \theta \\
\\
\end{array}=(L / 2) \alpha \sin \theta \hat{\imath}+(L / 2) \alpha \cos \theta \hat{\jmath}
\end{array} \quad \text { (7) } a_{G y}=(L / 2) \alpha \cos \theta\right)
$$

Step 4: Solve
Using the equations from Steps 2 and 3 above, solve for the angular acceleration of the bar.
Write your answer as a vector. Your answer should be in terms of, at most: m, L, g and θ.
(4) $\quad O_{x}=-2 m L \alpha \sin \theta$
(1) and (6): $N_{A}=-2 m L \alpha \sin \theta-m(L / 2) \alpha \sin \theta=-m(5 L / 2) \alpha \sin \theta$
(2) and (7): $O_{y}=m g+m(L / 2) \alpha \cos \theta$

Combining with (3):

$$
\begin{aligned}
&-[m g+m(L / 2) \alpha \cos \theta](L / 2) \cos \theta+[-2 m L \alpha \sin \theta](L / 2) \sin \theta \\
&+[-m(5 L / 2) \alpha \sin \theta](L / 2) \sin \theta=(1 / 12) m L^{2} \alpha \Rightarrow \\
& \vec{\alpha}=-\left[\frac{2 g \cos \theta / L}{1 / 3+\cos ^{2} \theta+9 \sin ^{2} \theta}\right] \hat{k} \stackrel{ }{\longleftrightarrow}
\end{aligned}
$$

ME 274: Basic Mechanics II - Spring 2024

Exam 2 -April 2

Problem 2 (20 points)

Given: The first stage in a Rube Goldberg machine requires releasing block A (mass $2 m$) from rest at $\theta=0 \mathrm{rad}$. Block A is suspended by a cord (length L) from fixed point O. When $\theta=\frac{\pi}{2}$ rad, block A must strike particle P (mass m). The coefficient of restitution for this impact event is e. After impact, particle P must travel on the smooth semicircular segment up to a maximum height h to activate the next stage in the machine. All motion occurs in the vertical plane.

The relevant motion states are: State 1: Upon release of block A
State 2: Right before impact
State 3: Right after impact
State 4: P reaches height of h

Find: Follow the solution steps to write an expression for L in terms of, at most, the known variables h, m, e, and g, to ensure the particle P is able to activate the next stage of the machine.

Solution

Part A: Use the spaces below to draw the pertinent FBDs for the motion at state 1-2, state 2-3, and state 3-4. Your FBDs must indicate the relevant coordinates, any conserved quantities, and denote gravitational datums as necessary.

State 1-2	State 2-3	State 3-4
ENERGY CONSERJED	inear momentum n a conserved	

Name \qquad SOLUTION
Exam 2 - April 2

Problem 2 (continued)

Part B: Use the work-energy equation to find an expression for the velocity of block A at state 2 : $\vec{v}_{A 2}$. Write the correct expressions in the appropriate spaces below.

$T_{1}=$	0
$V_{1}=$	0
$U_{1 \rightarrow 2}^{N C}=$	0
$T_{2}=$	$\frac{1}{2}(2 m) \sim_{A 2}^{2}$
$V_{2}=$	$-2 m g L$
$\vec{v}_{A 2}=$	$\sqrt{2 g L} \hat{\imath}$

$$
\begin{aligned}
& 0=\frac{1}{2}(2 m) N_{A_{2}^{2}}^{2}-2 m g L \\
& N_{A_{2}}=\sqrt{2 g L}
\end{aligned}
$$

Part C: Use linear impulse-momentum equations to find the velocity of particle P at state $3: \vec{v}_{P 3}$.

$$
\begin{align*}
& L M-n: 2 m p \sim_{A_{2}}+m \alpha \sim_{p_{2}}^{0}=2 n \alpha \sim_{A_{3}}+v h \sim_{p_{3}} \\
& 2 v_{A_{2}}=2 v_{A_{3}}+v_{P_{3}} \tag{1}\\
& \text { CENTRAL: } e=\frac{N_{P_{3}}-N_{A_{3}}}{N_{A_{2}}-N_{P 2}} \\
& e v_{A_{2}}=\sim \rho_{3}-v_{A_{3}} \text { (2) }
\end{align*}
$$

$$
(1) \varepsilon(2) \rightarrow \sim_{p_{3}}=\frac{2}{3}(e+1) \sqrt{2 g L}
$$

Problem 2 (continued)
Part D: Use the previous results and the work-energy equation from state 3-4 to find an expression for L in terms of the known variables. Write the correct expressions in the appropriate spaces below.

$T_{3}=$	$\frac{1}{2} m v_{P_{3}}^{2}$
$V_{3}=$	0
$U_{3 \rightarrow 4}^{N C}=$	0
$T_{4}=$	0
$V_{4}=$	$m g h$
$L=$	$9 h / Y(1+e)^{2}$

$$
\begin{gathered}
\frac{1}{2} m\left[\frac{2}{3}(1+e) \sqrt{2 g l}\right]^{2}=m \operatorname{gh} \\
L=\frac{9 h}{4(1+e)^{2}}
\end{gathered}
$$

\qquad

Problem 3 (20 points)

Part A (2 points)
Given: A particle of mass m is moving in a circular path where its position as a function of time is given by the expression $\vec{r}=b \cos (\omega t) \hat{\imath}+b \sin (\omega t) \hat{\jmath}$, where b and ω are constants.
Find: Calculate the total angular momentum of the particle about point O and mathematically show it is constant.

Solution:

$\vec{H}_{O}=\vec{r}_{P / O} \times\left(m \vec{v}_{P}\right)=[b \cos (\omega t) \hat{\imath}+b \sin (\omega t) \hat{\jmath}] \times[-b \omega \sin (\omega t) \hat{\imath}+b \cos (\omega t) \hat{\jmath}]$
$=b \cos (\omega t) \hat{\imath} \times(-b \omega \sin (\omega t) \hat{\imath})+b \cos (\omega t) \hat{\imath} \times b \cos (\omega t) \hat{\jmath}+b \sin (\omega t) \hat{\jmath} \times(-b \omega \sin (\omega t) \hat{\imath})$ $+b \sin (\omega t) \hat{\jmath} \times b \cos (\omega t) \hat{\jmath}$
$=b^{2} \omega(\cos (\omega t))^{2} \hat{k}+b^{2} \omega(\sin (\omega t))^{2} \hat{k}$
$=b^{2} \omega \hat{k} \quad$ since $(\cos (\omega t))^{2}+(\sin (\omega t))^{2}=1$

The angular momentum is constant that does not change with time.

Part B (8 points)

Given: An arm rotates around the fixed Z - axis with a rate of Ω. A circular disk rotates about its own axis with a constant rate of ω relative to the arm. At the instant shown, Ω increases at a rate of $\dot{\Omega}$. It is desired to know the acceleration of point A on the circumstance of the disk when A is directly above the center O and using the following equation:

$$
\vec{a}_{\mathrm{A}}=\vec{a}_{\mathrm{O}}+\left(\vec{a}_{\mathrm{A} / \mathrm{O}}\right)_{\mathrm{rel}}+\vec{\alpha} \times \vec{r}_{\mathrm{A} / \mathrm{O}}+2 \vec{\omega} \times\left(\vec{v}_{\mathrm{A} / \mathrm{O}}\right)_{\mathrm{rel}}+\vec{\omega} \times \vec{\omega} \times \vec{r}_{\mathrm{A} / \mathrm{O}}
$$

Find: Calculate the following vector quantities using the coordinate system incorporating the parameters: L, r, ω, Ω, and $\dot{\Omega}$. Note that not all parameters may be needed for each calculation.

1) For the case of an observer and a set of XYZ-axes attached to arm, determine the following terms:
a) $\vec{\omega}=$ \qquad $\Omega \widehat{K}$ \qquad
b) $\vec{\alpha}=$ \qquad $\dot{\Omega} \widehat{K}$ \qquad
c) $\left(\vec{v}_{\mathrm{A} / \mathrm{O}}\right)_{\mathrm{rel}}=$ \qquad $\omega r \hat{I}$ \qquad
d) $\left(\vec{a}_{\mathrm{A} / \mathrm{O}}\right)_{\text {rel }}=$ \qquad $-\omega^{2} r \widehat{K}$ \qquad
Note: you can use either $\hat{I}, \hat{\jmath}, \widehat{K}$ or $\hat{\imath}, \hat{\jmath}, \hat{k}$
2) For the case of an observer and a set of xyz-axes attached to disk, determine the following terms:
a) $\vec{\omega}=$ \qquad $\Omega \hat{k}+\omega \hat{\jmath}$ \qquad
b) $\vec{\alpha}=$ \qquad $\dot{\Omega} \hat{k}-\Omega \omega \hat{\jmath}$
c) $\left(\vec{v}_{\mathrm{A} / \mathrm{O}}\right)_{\text {rel }}=$ \qquad $\overrightarrow{0}$
d) $\left(\vec{a}_{\mathrm{A} / \mathrm{O}}\right)_{\text {rel }}=$ \qquad $\overrightarrow{0}$ \qquad
Note: you can use either $\hat{I}, \hat{\jmath}, \widehat{K}$ or $\hat{\imath}, \hat{\jmath}, \hat{k}$

Part C (6 points)

Given: Two systems as shown to the right are initially at rest, and the blocks are able to move in the vertical plane. The springs in both systems are massless with a stiffness of k, initially unstretched.

In system I), a single block having mass of $2 m$ falls through a distance d before compressing the spring.
In system II), a block of mass m is pushed downward by a constant force $F=m \mathrm{~g}$ as it falls through the same distance d and during the subsequent compression of the spring.

Considering the following 3 instants:

Instant 1 : initially at rest;
Instant 2: the block touches the spring;
Instant 3: the spring reaches a maximum compression;
Find:

1) Circle the correct answer for each of the statement:
a) TRUE r FALSE:

Using the provided datum line, the potential energy for system I is larger in magnitude than system II at Instant 1.

Tips: $2 \mathrm{mgd}>\mathrm{mgd}$
b) TRUE or FALSE

From Instant I to Instant 2, mechanical energy is conserved for both systems from Instant 1 to 2.

Tips: In system 2, F does non-conservative work
2) Circle the answer that most accurately describes the speed of the block in the two systems when it initially touches the spring (Instant 2):

```
a)}\mp@subsup{v}{1}{}<\mp@subsup{v}{II}{
b)}\mp@subsup{v}{I}{}>\mp@subsup{v}{II}{
c) vI= vII
d) More information is needed about the problem in order to answer this question.
```

Tips: Both systems have the same kinetic energy using work energy equation, but mass for system 2 is smaller, thus the speed has to be higher
\qquad

Part D (4 points)

Given: Particle A strikes a stationary particle B with a speed of $v_{A 1}$ with $0^{\circ}<\phi<90^{\circ}$. Both particles are smooth. Particle B is attached to a rigid bar of negligible mass that is pinned to the ground at point O as shown in the figure. The whole system is on a horizontal and smooth surface.

Find: Circle all the correct responses below. Some problems might have more than one correct response.

1) For system made up of A alone during impact:
a) linear momentum in the x-direction is conserved
b) linear momentum in the y-direction is conserved
c) linear momentum in the n-direction is conserved
d) linear momentum in the t-direction is conserved
e) angular momentum about C is conserved

Tips: Draw an FBD for A alone, only t-direction has no force
2) For system made of \boldsymbol{A} and \boldsymbol{B} during impact:
a) linear momentum in the x-direction is conserved
b) linear momentum in the y-direction is conserved
c) linear momentum in the n-direction is conserved
d) linear momentum in the t-direction is conserved
e) angular momentum about C is conserved

Tips: Draw an FBD for A and B together, no force in y-direction, and no moment about point C.

