
ME 274 - Spring 2024 - 11:30 - Quiz 5

Particle P is pulled from Position 1 to Position 2 over a smooth surface by the force F applied to cable.

Q1. Work done by friction, $U_{1\rightarrow 2}^{(f)}$

a)
$$U_{1\to 2}^{(f)} > 0$$

b)
$$U_{1\to 2}^{(f)} = 0$$

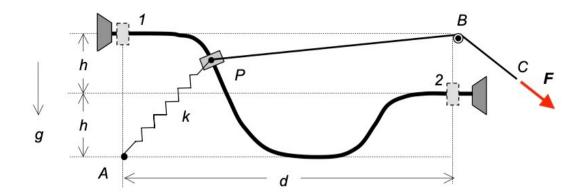
c)
$$U_{1\to 2}^{(f)} < 0$$

d) more information is needed about the shape of the guide in order to determine the sign of $U_{1\to 2}^{(f)}$.

(Spring unstretched at position 1)

Q2. Spring potential at position 2, $(V_2)_{sp}$

a)
$$(V_2)_{sp} = \frac{1}{2}kd^2$$


b)
$$(V_2)_{sp} = \frac{1}{2}kh^2$$

c)
$$(V_2)_{sp} = \frac{1}{2}k(d-2h)^2$$

d)
$$(V_2)_{sp} = \frac{1}{2}k(d^2 - 4h^2)$$

e)
$$(V_2)_{sp} = \frac{1}{2}k(\sqrt{d^2 + h^2} - 2h)^2$$

f) more information is needed about the shape of the guide in order to determine $\left(V_2\right)_{sp}$.

Q3. Change in gravitational potential, $\Delta V_{gr} = (V_2)_{gr} - (V_1)_{gr}$

- a) $\Delta V_{gr} > 0$
- b) $\Delta V_{gr} = 0$
- c) $\Delta V_{gr} < 0$
- d) more information is needed about the shape of the guide in order to determine the sign of ΔV_{gr} .

Q4. Work done by the force F, $U_{1\rightarrow 2}^{(F)}$

a)
$$U_{1\rightarrow 2}^{(F)} = Fd$$

b)
$$U_{1\rightarrow 2}^{(F)} = Fh$$

c)
$$U_{1\to 2}^{(F)} = 2Fh$$

d)
$$U_{1\to 2}^{(F)} = F(d+2h)$$

d)
$$U_{1\to 2}^{(F)} = F(d+2h)$$

e) $U_{1\to 2}^{(F)} = F(d-h)$
f) $U_{1\to 2}^{(F)} = F(d-2h)$

f)
$$U_{1\to 2}^{(F)} = F(d-2h)$$

g)
$$U_{1\rightarrow 2}^{(F)} = F\left(\sqrt{d^2 + h^2}\right)$$

h) more information is needed about the shape of the guide to determine $U_{1\to 2}^{(F)}$.