ME 274 - Spring 2024 - 11:30 - Quiz 4

Problem 1

A forward-traveling automobile P has its velocity and acceleration expressed in terms of a set of polar coordinates of: $\bar{v} = (15\hat{e}_r - 20\hat{e}_\theta)m/s$ and $\bar{a} = (6\hat{e}_\theta)m/s^2$, respectively. From this, it is known that:

- a) P is turning left.
- b) P is turning right.
- c) P is traveling on a straight path.
- d) More information is needed.

Problem 2

For the velocity and acceleration of P given in Problem 1:

- a) P is increasing speed.
- b) P is decreasing speed.
- c) P is traveling at a constant speed.
- d) More information is needed.

$$\dot{V} = \vec{a} \cdot \frac{\vec{V}}{|\vec{V}|}$$

= (620). $\frac{15\hat{e}_r - 20\hat{e}_0}{\sqrt{15^2 + 20^2}}$
= $-\frac{120}{35}$ m/ $e^2 < 0$

Problem 3

Two bodies, A and B, are connected by a cable-pulley system. The motions of A and B are represented by the finite distances of s_A and s_B , respectively, and the length of the inextensible cable is known to be $L=3s_B+2\sqrt{s_A^2+h^2}+constants$, where h= constant. Let v_A and v_B be the speeds of A and B, respectively.

a)
$$v_A > v_B$$

b)
$$v_A = v_B$$

c)
$$v_A < v_B$$

d) More information is needed.

$$V_{B} = \begin{bmatrix} \frac{2}{3} & \frac{\Delta_{A}}{\sqrt{\Delta_{A}^{2} + h^{2}}} V_{A} \\ & < 1 \end{bmatrix}$$