Summary: 3D Moving Reference Frame Kinematics 2

PROBLEM: A person attached to a moving body (reference frame) is observing the motion of point A.
$\vec{v}_{A}=\vec{v}_{O}+\left(\vec{v}_{A / O}\right)_{r e l}+\vec{\omega} \times \vec{r}_{A / O}$
$\vec{a}_{A}=\vec{a}_{O}+\left(\vec{a}_{A / O}\right)_{r e l}+\vec{\alpha} \times \vec{r}_{A / O}+2 \vec{\omega} \times\left(\vec{v}_{A / O}\right)_{r e l}+\vec{\omega} \times\left(\vec{\omega} \times \vec{r}_{A / O}\right)$

CHANGING OBSERVERS: For constant rotation rates,

Observer on vertical shaft:

$$
\begin{aligned}
& \vec{\omega}=\Omega \hat{J} \\
& \vec{\alpha}=\frac{d \vec{\omega}}{d t}=\overrightarrow{0} \\
& \left(\vec{v}_{A / O}\right)_{r e l}=L \dot{\theta} \hat{j} \\
& \left(\vec{a}_{A / O}\right)_{r e l}=-L \dot{\theta}^{2} \hat{i}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Observer on arm OA: } \\
& \qquad \begin{array}{l}
\vec{\omega}=\Omega \hat{J}+\dot{\theta} \hat{k} \\
\vec{\alpha}=\frac{d \vec{\omega}}{d t}=\dot{\Omega} \hat{J}+\Omega \dot{\vec{J}}+\ddot{\theta} \hat{k}+\dot{\theta} \dot{\hat{k}}=\dot{\theta}(\vec{\omega} \times \hat{k}) \\
\left(\vec{v}_{A / O}\right)_{\text {rel }}=\overrightarrow{0} \\
\left(\vec{a}_{A / O}\right)_{\text {rel }}=\overrightarrow{0}
\end{array}
\end{aligned}
$$

These give the same result! Try it.

