Summary: 2D Moving Reference Frame Kinematics 2

PROBLEM: A person attached to a moving body (reference frame) is observing the motion of point B.
$\vec{v}_{B}=\vec{v}_{A}+\left(\vec{v}_{B / A}\right)_{r e l}+\vec{\omega} \times \vec{r}_{B / A}$
$\vec{a}_{B}=\vec{a}_{A}+\left(\vec{a}_{B / A}\right)_{\text {rel }}+\vec{\alpha} \times \vec{r}_{B / A}+2 \vec{\omega} \times\left(\vec{v}_{B / A}\right)_{\text {rel }}+\vec{\omega} \times\left(\vec{\omega} \times \vec{r}_{B / A}\right)$
observer

APPLICATION: Using 2D MRF equations in solving problems in the kinematics of mechanisms.

AP (rigid body):

$$
\begin{aligned}
& \vec{v}_{P}=(-\Omega \hat{k}) \times \vec{r}_{P / A} \\
& \vec{a}_{P}=(-\Omega \hat{k}) \times \vec{r}_{P / A}+(-\Omega \hat{k}) \times\left[(-\Omega \hat{k}) \times \vec{r}_{P / A}\right]
\end{aligned}
$$

OP (not a rigid body):

$$
\begin{aligned}
& \vec{v}_{P}=\dot{x}_{p} \hat{i}+\left(\omega_{O B} \hat{k}\right) \times \vec{r}_{P / A} \\
& \vec{a}_{P}=\ddot{x}_{P} \hat{i}+\left(\alpha_{O B} \hat{k}\right) \times \vec{r}_{P / A}+2\left(\omega_{O B} \hat{k}\right) \times\left(\dot{x}_{P} \hat{i}\right)+\left(\omega_{O B} \hat{k}\right) \times\left[\left(\omega_{O B} \hat{k}\right) \times \vec{r}_{P / A}\right]
\end{aligned}
$$

me 274-cmk

