Summary: 2D Moving Reference Frame Kinematics 1

PROBLEM: A person attached to a moving body (reference frame) is observing the motion of point B.
$\vec{v}_{B}=\vec{v}_{A}+\left(\vec{v}_{B / A}\right)_{r e l}+\vec{\omega} \times \vec{r}_{B / A}$
$\vec{a}_{B}=\vec{a}_{A}+\left(\vec{a}_{B / A}\right)_{\text {rel }}+\vec{\alpha} \times \vec{r}_{B / A}+2 \vec{\omega} \times\left(\vec{v}_{B / A}\right)_{\text {rel }}+\vec{\omega} \times\left(\vec{\omega} \times \vec{r}_{B / A}\right)$

where:

- $\vec{\omega}$ is the angular velocity of the observer (no exceptions).
- $\vec{\alpha}$ is the angular velocity of the observer (no exceptions).
- $\left(\vec{v}_{B / A}\right)_{\text {rel }}$ is the velocity of B as seen by the observer (no exceptions).
- $\left(\vec{a}_{B / A}\right)_{\text {rel }}$ is the acceleration of B as seen by the observer (no exceptions).
- A is $\underline{A N Y}$ point on the same reference frame as the observer.
- Generally, you are free to choose your observer.

