Quizo3-Q1
Question C1.7
A polar description with variables r and θ is used to describe the kinematics of point P . For a position with $r=0.5 \mathrm{~m}$ and $\theta=2$ radians, the velocity and acceleration vectors for P are known to be:

$$
\begin{aligned}
\vec{v}_{P} & =\left(-6 \hat{e}_{r}+2 \hat{e}_{\theta}\right) \mathrm{m} / \mathrm{s} \\
\vec{a}_{P} & =\left(10 \hat{e}_{r}\right) \mathrm{m} / \mathrm{s}^{2}
\end{aligned}
$$

respectively. Circle the item below that most accurately describes the speed of P :
(a) The speed of P is increasing.
(b) The speed of P is not changing.
(c) The speed of P is decreasing.

Provide a justification for your answer.

$$
\begin{aligned}
\stackrel{V}{V}_{p} & =\vec{a}_{p} \cdot \hat{e}_{t}=\vec{a}_{p} \cdot \frac{\vec{V}_{p}}{\left|\vec{V}_{p}\right|}=\left(10 \hat{e}_{r}\right) \cdot\left[\frac{-6 \hat{e}_{r}+2 \hat{e}_{0}}{\sqrt{6^{2}+2^{2}}}\right] \\
& =-\frac{60}{\sqrt{40}} \frac{m}{s^{2}}<0 \Rightarrow \text { decreasing speed }
\end{aligned}
$$

Quizo3-Q2
Question C1.9
An automobile A travels along a highway with a speed of v_{A}. A police officer, at point O and a distance of r from A, accurately measures \dot{r} (the time derivative of the distance r) with a hand-held radar device. Circle the item below that most accurately describes the size of $|\dot{r}|$ as compared to the speed v_{A} :
(a) $|\dot{r}|>v_{A}$ (the officer overestimates the speed of the automobile)
(b) $|\dot{r}|=v_{A}$ (the officer accurately measures the speed of the automobile)
(c) $|\dot{r}|<v_{A}$ (the officer underestimates the speed of the automobile)

Provide a written justification for your answer.

QuzO3-Q3
Question C1.12
Blocks A and B are connected by an inextensible cable, as shown in the figure below. Assume that the radius of the pulley is small compared to the other dimensions of the problem. Block A moves along a horizontal path, and block B moves along a vertical path. At the instant shown, B is moving downward with a speed of v_{B}. Circle the answer below that most accurately describes the speed of A, v_{A}, as compared to the speed of B :
(a) $v_{A}>v_{B}$
(b) $v_{A}=v_{B}$
(c) $v_{A}<v_{B}$
(d) More information is needed about the problem in order to answer this question.

Provide an mathematical justification for your answer.

$$
\begin{aligned}
L & =\text { cable length } \\
& =\sqrt{A_{A}^{2}+h^{2}}+s_{B}+\text { constant }=\text { constant }
\end{aligned}
$$

$\therefore \frac{d L}{d t}=\frac{1}{2} \frac{2 \Delta_{A} \dot{D}_{A}}{\sqrt{S_{A}^{2}+h^{2}}}+\dot{S}_{B}=\left[\frac{\Delta_{A}}{\sqrt{\Delta_{A}^{2}+n^{2}}}\right] \dot{S}_{A}+\dot{S}_{B}=0$

$$
\left.\therefore \quad V_{B}=\frac{\left(\frac{\Delta A}{\sqrt{\Delta A^{2}+n^{2}}}\right.}{\leq 1}\right) V_{A} \leqslant V_{A}
$$

