ME 274 – Spring 2024 Quiz 2 - 11:30/1:30 sections Worksheet

Consider the radial distance r and the angle θ used to describe the position of point P. When $\theta = 36.87^{\circ}$, the velocity and acceleration of P in terms of their polar coordinates are, respectively: $\vec{v} = (4\hat{e}_r - 3\hat{e}_\theta) m/s$ and $\vec{a} = (10\hat{e}_\theta) m/s^2$.

In your calculations, please use $cos36.87^\circ = 0.8$ and $sin 36.87^{\circ} = 0.6.$

SOLUTION

<u>PART a</u>) Write down the Cartesian unit vectors \hat{i} and \hat{j} in terms of the polar unit vectors \hat{e}_r and \hat{e}_{θ} :

- $\hat{\iota} = \cos\theta \hat{e}_r \sin\theta \hat{e}_{\theta} = 0.8 \hat{e}_r 0.6 \hat{e}_{\theta}$
- $\hat{j} = \sin\theta \, \hat{e}_r + \cos\theta \hat{e}_\theta = 0.6 \hat{e}_r + 0.8 \hat{e}_\theta$

<u>PART b</u>) Write down the polar unit vectors \hat{e}_r and \hat{e}_{θ} in terms of the Cartesian unit vectors \hat{i} and \hat{j} :

 $\hat{e}_r = \cos\theta \hat{\imath} + \sin\theta \hat{\jmath} = 0.8\hat{\imath} + 0.6\hat{\jmath}$ $\hat{e}_{\theta} = -\sin\theta \hat{\imath} + \cos\theta \hat{\jmath} = -0.6\hat{\imath} + 0.8\hat{\jmath}$

<u>PART c</u>) What are the numerical values for \dot{x} and \dot{y} ? What are the numerical values for \ddot{x} and \ddot{y} ?

$$\dot{x} = \vec{v} \cdot \hat{\imath} = (4\hat{e}_r - 3\hat{e}_{\theta}) \cdot (0.8\theta\hat{e}_r - 0.6\hat{e}_{\theta}) = 5.0 \text{ m/s}$$

$$\dot{y} = \vec{v} \cdot \hat{\jmath} = (4\hat{e}_r - 3\hat{e}_{\theta}) \cdot (0.6\hat{e}_r + 0.8\hat{e}_{\theta}) = 0$$

$$\ddot{x} = \vec{a} \cdot \hat{\imath} = (10\hat{e}_{\theta}) \cdot (0.8\theta\hat{e}_r - 0.6\hat{e}_{\theta}) = -6.0 \text{ m/s}^2$$

$$\ddot{y} = \vec{a} \cdot \hat{\jmath} = (10\hat{e}_{\theta}) \cdot (0.6\hat{e}_r + 0.8\hat{e}_{\theta}) = 8.0 \text{ m/s}^2$$

BONUS part Is the speed of P increasing, decreasing or is it constant? Explain.

$$\dot{v} = \vec{a} \cdot \hat{e}_t = \vec{a} \cdot \frac{\vec{v}}{|\vec{v}|} = (10\hat{e}_\theta) \cdot \left(\frac{4\hat{e}_r - 3\hat{e}_\theta}{5}\right) = -6\frac{m}{s^2} < 0 \quad \Longrightarrow \quad \text{DECREASING in speed}$$