Worksheet

Consider the radial distance r and the angle θ used to describe the position of point P . When $\theta=36.87^{\circ}$, the velocity and acceleration of P in terms of their polar coordinates are, respectively: $\vec{v}=\left(4 \hat{e}_{r}-3 \hat{e}_{\theta}\right) \mathrm{m} / \mathrm{s}$ and $\vec{a}=\left(10 \hat{e}_{\theta}\right) \mathrm{m} / \mathrm{s}^{2}$.

In your calculations, please use $\cos 36.87^{\circ}=0.8$ and $\sin 36.87^{\circ}=0.6$.

PART a) Write down the Cartesian unit vectors $\hat{\imath}$ and $\hat{\jmath}$ in terms of the polar unit vectors \hat{e}_{r} and \hat{e}_{θ} :

$$
\begin{aligned}
& \hat{\imath}=\cos \theta \hat{e}_{r}-\sin \theta \hat{e}_{\theta}=0.8 \hat{e}_{r}-0.6 \hat{e}_{\theta} \\
& \hat{\jmath}=\sin \theta \hat{e}_{r}+\cos \theta \hat{e}_{\theta}=0.6 \hat{e}_{r}+0.8 \hat{e}_{\theta}
\end{aligned}
$$

PARTb) Write down the polar unit vectors \hat{e}_{r} and \hat{e}_{θ} in terms of the Cartesian unit vectors $\hat{\imath}$ and $\hat{\jmath}$:

$$
\begin{aligned}
& \hat{e}_{r}=\cos \theta \hat{\imath}+\sin \theta \hat{\jmath}=0.8 \hat{\imath}+0.6 \hat{\jmath} \\
& \hat{e}_{\theta}=-\sin \theta \hat{\imath}+\cos \theta \hat{\jmath}=-0.6 \hat{\imath}+0.8 \hat{\jmath}
\end{aligned}
$$

PARTC) What are the numerical values for \dot{x} and \dot{y} ? What are the numerical values for \ddot{x} and \ddot{y} ?

$$
\begin{aligned}
& \dot{x}=\vec{v} \bullet \hat{\imath}=\left(4 \hat{e}_{r}-3 \hat{e}_{\theta}\right) \bullet\left(0.8 \theta \hat{e}_{r}-0.6 \hat{e}_{\theta}\right)=5.0 \mathrm{~m} / \mathrm{s} \\
& \dot{y}=\vec{v} \bullet \hat{\jmath}=\left(4 \hat{e}_{r}-3 \hat{e}_{\theta}\right) \bullet\left(0.6 \hat{e}_{r}+0.8 \hat{e}_{\theta}\right)=0 \\
& \ddot{x}=\vec{a} \bullet \hat{\imath}=\left(10 \hat{e}_{\theta}\right) \bullet\left(0.8 \theta \hat{e}_{r}-0.6 \hat{e}_{\theta}\right)=-6.0 \mathrm{~m} / \mathrm{s}^{2} \\
& \ddot{y}=\vec{a} \bullet \hat{\jmath}=\left(10 \hat{e}_{\theta}\right) \bullet\left(0.6 \hat{e}_{r}+0.8 \hat{e}_{\theta}\right)=8.0 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

BONUS part Is the speed of P increasing, decreasing or is it constant? Explain.

$$
\dot{v}=\vec{a} \bullet \hat{e}_{t}=\vec{a} \bullet \frac{\vec{v}}{|\vec{v}|}=\left(10 \hat{e}_{\theta}\right) \cdot\left(\frac{4 \hat{e}_{r}-3 \hat{e}_{\theta}}{5}\right)=-6 \frac{m}{s^{2}}<0 \quad \Rightarrow \quad \text { DECREASING in speed }
$$

