Given positions of point P shown below in terms of radial position r and position angle θ . For each of the four situations below, sketch the polar unit vectors \hat{e}_r and \hat{e}_θ , along with the velocity and acceleration vectors, \vec{v} and \vec{a} .

Recall: $\vec{v} = \dot{r}\hat{e}_r + r\dot{\theta}\hat{e}_{\theta}$ and $\vec{a} = (\ddot{r} - r\dot{\theta^2})\hat{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{e}_{\theta}$.

a) $\dot{r}>0$ = constant, and $\dot{ heta}>0$ = constant

b) $\dot{r}>0$ = constant, and $\dot{ heta}>0$ = constant

c) $\dot{r}>0$ = constant, and $\dot{\theta}>0$ = constant

d) $\dot{r}>0$ = constant, and $\dot{\theta}>0$ = constant

