Rolling Without Slipping

Consider the wheel shown below that rolls along a rough, stationary horizontal surface with the center of the wheel O having a velocity and acceleration of v_{O} and a_{O}, respectively. As the wheel moves, it is assumed that sufficient friction acts between the wheel and the fixed horizontal surface that the contact point C does not slip. The consequences of the "no slip" condition at C are:

$$
\begin{aligned}
v_{c x} & =0 \\
a_{c x} & =0
\end{aligned}
$$

(If either of the above is not true, then point C "slips" as the wheel moves.)

We will encounter many problems throughout the course that involve the rolling without slipping of a body on a stationary surface. Although this concept is defined through a simple set of equations, the consequences of rolling without slipping on the velocity and acceleration of other points on the body can become quite complicated. We will see this through a number of examples.

CHALLENGE QUESTION: If C is a no-slip point, what are the y-components for the velocity and acceleration of C ?

ANSWER: Since O moves on a straight, horizontal path, the y-components of the velocity and acceleration of O are zero. From this and the no-slip condition above for C, we can write:

$$
\begin{aligned}
\vec{v}_{C} & =\vec{v}_{O}+\vec{\omega} \times \vec{r}_{C / O} \\
v_{C y} \hat{j} & =v_{O} \hat{i}+(\omega \hat{k}) \times(-R \hat{j})=\left(v_{O}+R \omega\right) \hat{i} \quad \Rightarrow \quad v_{C y}=0
\end{aligned}
$$

and

$$
\begin{aligned}
\vec{a}_{C} & =\vec{a}_{O}+\vec{\alpha} \times \vec{r}_{C / O}-\omega^{2} \vec{r}_{C / O} \\
a_{C y} \hat{j} & =a_{O} \hat{i}+(\alpha \hat{k}) \times(-R \hat{j})-\omega^{2}(-R \hat{j}) \\
& =\left(a_{O}+R \alpha\right) \hat{i}+R \omega^{2} \hat{j} \quad \Rightarrow \quad a_{C y}=R \omega^{2}
\end{aligned}
$$

From this we see that: $\vec{v}_{c}=\overrightarrow{0}$ and $\vec{a}_{C}=R \omega^{2} \hat{j} \neq \overrightarrow{0}$.

