Summary: Rigid Body Kinematics 1

PROBLEM: Two points A and B on the same rigid body undergoing planar motion.

$$
\begin{aligned}
& \vec{v}_{B}=\vec{v}_{A}+\vec{\omega} \times \vec{r}_{B / A} \\
& \vec{a}_{B}=\vec{a}_{A}+\vec{\alpha} \times \vec{r}_{B / A}+\vec{\omega} \times\left(\vec{\omega} \times \vec{r}_{B / A}\right)
\end{aligned}
$$

COMMENTS:

- $\vec{\omega}$ and $\vec{\alpha}$ are the angular velocity and angular acceleration vectors of the body. These are the same for ANY two points A and B.
- $\vec{r}_{B / A}$ points $\underline{F R O M}$ point A $\underline{T O}$ point B.
- If A and B lie in the same plane, then: $\vec{a}_{B}=\vec{a}_{A}+\vec{\alpha} \times \vec{r}_{B / A}-\omega^{2} \vec{r}_{B / A}$
- From where did these equations come? From the general motion of two points (Chapter 1) with the constraint that $\left|\vec{r}_{B / A}\right|=$ constant.

