Homework H.3.E

Given: A shaft rotates about a fixed vertical axis at a constant rate of Ω, as shown below. A straight bar OA, having a length of L, is pinned to point O on the shaft, with O being on the rotation axis of the shaft. At the instant when $\theta=0^{\circ}$, bar OA is being raised at a rate of $\dot{\theta}$ from the horizontal plane, with this rate changing at a rate of $\ddot{\theta}$. A set of $x y z$ coordinate axes is attached to bar OA with its origin at O . A second set of coordinate axes, $X Y Z$, are fixed to ground. At the instant when $\theta=0^{\circ}$, the $x y z$ and $X Y Z$ axes are aligned with each other.

Find: For the instant when $\theta=0^{\circ}$, determine the angular velocity and angular acceleration of bar OA.

Use the following parameters in your analysis: $\Omega=5 \mathrm{rad} / \mathrm{s}, \dot{\theta}=4 \mathrm{rad} / \mathrm{s}, \ddot{\theta}=-3 \mathrm{rad} / \mathrm{s}^{2}$ and $L=2$ m.

