Homework H.4.F

Given: Particle P (having a mass of m) is constrained to move around the wall of a horizontal circular cavity, with the path of P in the cavity being a circle of radius R. The horizontal surface on which P moves is smooth, with the wall of the cavity along which P moves is rough having a coefficient of kinetic friction between the wall and P of μ_{k}. When at position A, P is known to have a speed of v_{A}.

Find: For this problem,
(a) Show that the speed of P as it moves around the cavity is governed by the differential equation: $d v / d s=-\mu_{k} v / R$, where s is the distance traveled by P .
(b) Using the result of (a) above, determine the speed v of P as a function of s as it moves around the cavity wall. (HINT: Integrate the differential equation found in (a).) Leave your answer in terms of, at most, v_{A}, μ_{k}, R and s.
(c) How far does P travel before it comes to rest?

