Homework H.4.E

Given: A slotted arm is rotating about end O with a constant rate of Ω. Particle P (of mass m) is attached to link AP, with the mass of AP assumed to be negligible compared to the mass of P. P is constrained to move within a smooth, straight slot. At the position of interest, AP is at an angle of θ measured counterclockwise from the slotted arm. Note that AP is a two-force member. The mechanism moves in a horizontal plane.

Find: For this position,
(a) Determine the velocity and acceleration of P. Write your answers as vectors, in terms of their $x y$ coordinates. It is suggested that you use the moving reference frame equations in your analysis for the velocity and acceleration of P . Use an observer attached to the slotted arm.
(b) Determine the normal force acting on P and the force acting on P by link AP.

HORIZONTAL plane

Use the following parameters in your analysis: $m=20 \mathrm{~kg}, \theta=36.87^{\circ}, d=0.75 \mathrm{~m}, L=2 \mathrm{~m}$ and $\Omega=5 \mathrm{rad} / \mathrm{s}$.

