Homework H.6.K

Given: A homogeneous disk, having a mass of m and outer radius of R, rolls without slipping on a rough, horizontal surface. A spring of stiffness 2k is connected between the center O of the disk and ground on the left side of the disk. A second spring, having a stiffness of k, is connected between O and the moveable base B. Base B is given a prescribed horizontal motion of $x_B(t) = b \sin \omega t$. Let θ represent the rotation of the disk measure positive clockwise, and let $\theta = 0$ rad and $x_B = 0$ m describe the state at which the springs are unstretched.

Find: For this problem:

- (a) Draw a free body diagram of the disk;
- (b) Derive the differential equation of motion for the system in terms of the coordinate θ ;
- (c) Derive the particular solution $\theta_p(t) = A \sin \omega t$ for the previously-obtained equation of motion; and
- (d) Make a plot of the amplitude of θ_p (i.e. |A|) versus the excitation frequency ω .

Use the following parameters in your analysis: m = 24 kg, k = 108 N/m, R = 0.2 m, and b = 0.03 m.