Homework H.6.K

Given: A homogeneous disk, having a mass of m and outer radius of R, rolls without slipping on a rough, horizontal surface. A spring of stiffness $2 k$ is connected between the center O of the disk and ground on the left side of the disk. A second spring, having a stiffness of k, is connected between O and the moveable base B . Base B is given a prescribed horizontal motion of $x_{B}(t)=b \sin \omega t$. Let θ represent the rotation of the disk measure positive clockwise, and let $\theta=0 \mathrm{rad}$ and $x_{B}=0 \mathrm{~m}$ describe the state at which the springs are unstretched.

Find: For this problem:
(a) Draw a free body diagram of the disk;
(b) Derive the differential equation of motion for the system in terms of the coordinate θ;
(c) Derive the particular solution $\theta_{p}(t)=A \sin \omega t$ for the previously-obtained equation of motion; and
(d) Make a plot of the amplitude of θ_{p} (i.e. $\left.|A|\right)$ versus the excitation frequency ω.

Use the following parameters in your analysis: $m=24 \mathrm{~kg}, k=108 \mathrm{~N} / \mathrm{m}, R=0.2 \mathrm{~m}$, and $b=0.03$ m.

