Problem H.1.J

Given: Aircraft A is traveling along a straight-line path with a speed of v_{A} that is increasing by an amount of \dot{v}_{A}. The aircraft is towing a glider B with a cable that has a length of R. The angle θ of the towline is increasing by a constant amount of $\dot{\theta}$.

Find: For this problem:
(a) Determine the velocity vector of the point on glider B to which the cable is attached.
(b) Determine the acceleration vector of the point on glider B to which the cable is attached.

Use the following parameters in your analysis: $R=80 \mathrm{~m}, v_{A}=700 \mathrm{~m} / \mathrm{s}, \dot{v}_{A}=4 \mathrm{~m} / \mathrm{s}^{2}$ and $\theta=20^{\circ}$ and $\dot{\theta}=0.1 \mathrm{rad} / \mathrm{s}$.

