Problem H.1.H

Given: A baseball P moves along the path in the vertical $x y$-plane shown below in the figure in the absence of air resistance. The velocity of P makes an angle of β with respect to the horizontal. The motion of P is monitored by an observer at O who is able to measure the radial distance r from O to P and the angle θ that the line OP makes with the horizontal, as shown in the figure. Note that since the air resistance is to be considered negligible, the acceleration of P is g vertically downward. At the position shown, line OP is vertical $\left(\theta=90^{\circ}\right)$ and $r=6 \mathrm{ft}$.

Find: For the position shown:
(a) Make a sketch of P showing the polar unit vectors \hat{e}_{r} and \hat{e}_{θ}, and the path unit vectors \hat{e}_{t} and \hat{e}_{n}.
(b) Determine numerical values for $\dot{r}, \dot{\theta}, \ddot{r}$ and $\ddot{\theta}$.
(c) Write the path unit vectors \hat{e}_{t} and \hat{e}_{n} in terms of \hat{e}_{r} and \hat{e}_{θ} polar unit vectors.
(d) Determine the rate of change of speed of P, \dot{v}, and the radius of curvature, ρ, of the path of P at this position.

Use the following parameters in your analysis: $v=100 \mathrm{ft} / \mathrm{s}$ and $\beta=36.87^{\circ}$.

