Problem H.1.H

Given: A baseball P moves along the path in the vertical xy-plane shown below in the figure in the absence of air resistance. The velocity of P makes an angle of β with respect to the horizontal. The motion of P is monitored by an observer at O who is able to measure the radial distance r from O to P and the angle θ that the line OP makes with the horizontal, as shown in the figure. Note that since the air resistance is to be considered negligible, the acceleration of P is g vertically downward. At the position shown, line OP is vertical ($\theta = 90^\circ$) and r = 6 ft.

Find: For the position shown:

- (a) Make a sketch of P showing the polar unit vectors \hat{e}_r and \hat{e}_{θ} , and the path unit vectors \hat{e}_t and \hat{e}_n .
- (b) Determine numerical values for \dot{r} , $\dot{\theta}$, \ddot{r} and $\ddot{\theta}$.
- (c) Write the path unit vectors \hat{e}_t and \hat{e}_n in terms of \hat{e}_r and \hat{e}_{θ} polar unit vectors.
- (d) Determine the rate of change of speed of P, \dot{v} , and the radius of curvature, ρ , of the path of P at this position.

Use the following parameters in your analysis: v = 100 ft/s and $\beta = 36.87^{\circ}$.