Homework H.1.C

Given: Cart P travels on a rollercoaster track. Let s represent the distance traveled by P on this track, where s has units of feet. In terms of the distance s, the radius of curvature of the track, the angle of the tangent to the track and the speed of P are known to be $\rho=1 / b s, \theta=b s^{2} / 2$ and $v(s)=d-c s^{2}$, respectively.

Find: For this problem:
(a) Determine the path variable components of velocity and acceleration of P as a function of s.
(b) Evaluate your results in (a) above for $s=100 \mathrm{ft}$. Make a sketch of the velocity and acceleration vectors at this position.

Use the following parameters in your analysis: $b=1 \times 10^{-4} / \mathrm{ft} t^{2}, d=150 \mathrm{ft} / \mathrm{s}$ and $c=1 \times 10^{-2} / \mathrm{ft} \cdot \mathrm{s}$.

