Example 5.C.9 Ansuper Key
Given: A rod of mass $m$ and length $L$ is pinned to a block of mass $M$. The block can slide on a frictionless horizontal surface. The rod is released from rest when $\theta=30^{\circ}$.

Find: Determine:
(a) The angular velocity of the rod when $\theta=90^{\circ}$; and
(b) The velocity of the block when $\theta=90^{\circ}$.

Consider using both the work-energy and linear impulse-momentum equations in your solution. Use the following parameters in your analysis: $m=10 \mathrm{~kg}, M=30 \mathrm{~kg}$ and $L=2 \mathrm{~m}$.

## O FAD

$T_{1}+r_{1}+2 d_{1-2}^{N C}=T_{2}+V_{2}$
$T_{1}=0 \quad \forall_{1}=m q c / r \cos \theta_{0}$
万 $=1 / 2 m V_{0}^{2}+1 / 2 J_{6} w^{2}+1 / 2 A V_{A}^{2}$
$m \delta 2 / 2 \cos \theta_{0}=1 / 2 m V_{6}^{2}+1 / 2 I_{6} w^{2}$

$$
+1 / 2+v_{n}^{2}
$$

Equations 1 , unknowns: $V_{6}, W_{1}, V_{A}$
Now momentum is conserved in "x" direction

$$
\xrightarrow{\Rightarrow} 0=m-r_{A}+n r_{G} x
$$



I don't need
'd'since the conservative.
 system is

(3) Kinematics

$$
\begin{aligned}
& \bar{v}_{G}=\overline{v_{A}}+\overrightarrow{w^{\prime}} \times \overrightarrow{v_{c / t}} \\
& V_{G X i}+V_{G Y j}=V_{A} \hat{j}+W \hat{k} \times L / 2 \uparrow \\
& V_{\text {axis }}+V_{o y j}=\overline{V_{A}} \hat{i}+\omega L / 2 \hat{\jmath} \\
& \text {, } \quad V_{6} x=V_{A} \\
& \text { o } r_{0 H}=w L / 2
\end{aligned}
$$

ane ce $0=40^{\circ}$.
(6) Solve
ox, we have a contradiction

$$
r_{A}=\frac{-A}{m} V_{G} x \text { - and } \gamma_{G} x=V_{A x}
$$

The only, solution that sarfisfice is
$V_{C x}=V_{A X}=0$. This means that it falls and stops.

$$
\begin{aligned}
m q L / 2 \cos \theta_{0} & =1 / 2 m V_{6}^{2}+1 / 2 I_{6} w^{2}+1 / 2 N V_{A}^{2} \\
m q L / 2 \cos \theta_{0} & =1 / 2 m V_{6}^{2}+1 / 2 I_{0} w^{2}+0 \\
m q L / 2 \cos \theta & =1 / 2 m L^{2} / 4 w^{2}+1 / 2\left(1 / 2 m L^{2}\right) w \\
& =1 / 2\left(1 / 3 m L^{2}\right) w^{2} \\
3 m q<\cos \theta & =n L^{2} w^{2}
\end{aligned}
$$

$$
w=\sqrt{3 \% \cos \theta}
$$

$$
V_{A}=0
$$

B
This was nested you have to realize it stops moving in "x" direction when $0=900$. You will have a Hut proven that does the sumba.

