1) Consider the homogeneous of disks A and B with $m_{A}>m_{B}$ and $n_{A}>R_{B}$. The disks are released from rest. Circle the answer below that most accurately describes the relative size of the angular acceleration of the centers of the two disk, α_{A} and α_{B} on release.

Let's just look at disk A

$$
\begin{gathered}
\sigma \sum m_{C}=(m A g \sin \theta) R_{A}=I_{C} \alpha_{A} \\
I_{C}=1 / m R_{A}^{2}+m_{A}^{2} \\
\alpha A=\frac{m A g \sin \theta L_{A}}{3 / 2 m R_{A}^{2}} \\
\alpha A=\frac{2}{3} \pi / R_{A}
\end{gathered}
$$

if we do the same for B

$$
\begin{array}{ll}
\alpha_{B}=2 / 3 g / R_{B} & \text { The } \alpha \text { is a function of rads } \\
\text { not of mass } \\
\alpha_{A}=2 / 38 / R_{A} & \alpha_{B}=2 / 3 ~
\end{array} / R_{B} \quad R_{A}>R_{B} .
$$

then $\alpha_{A}<\alpha_{B}$ Ans
2) The homogeneous ring and disk are released from rest at the same height. Let Vas and VB2 represent the speed of the ring and disk after they have dropped through the same vertical distance H. What answer below that most accurately describes the relative sizes of v_{12} and v_{32}.

$I_{A}=m R^{2}$

$$
I_{B}=1 / 2 m R^{2}
$$

$$
V=W R
$$

$$
T_{1}+V_{1}+\sum U_{1 \rightarrow 2}^{N}=T_{2}+V_{2}
$$

$$
\begin{aligned}
T_{1} & =0 \\
V_{1} & =m q H \\
V_{2} & =0 \\
T_{2} & =1 / 2 m V_{A 2}^{2}+1 / 2 I_{A} W_{2}^{2} \\
& =1 / 2\left(m V_{A 2}^{2}+m R^{2} \frac{V_{A 2}^{2}}{R^{2}}\right) \\
& =1 / 2(2 m) V_{A 2}^{2}
\end{aligned}
$$

$$
\begin{aligned}
T_{2} & =0 \\
V_{1} & =m q H \\
V_{2} & =0 \\
T_{2} & =1 / 2 m V_{B 2}^{2}+1 / 2 I_{B} W_{2}^{2} \\
& =1 / 2 m V_{B 2}^{2}+1 / 2\left(1 / 2 m R^{2}\right) \frac{V_{B 2}^{2}}{R^{2}} \\
& =1 / 2(3 / 2 m) V_{B 2}^{2}
\end{aligned}
$$

Since $V_{2}-V_{1}$ is the same for both systems and $T_{2}=-\left(V_{2}-V_{1}\right)$ T_{2} is the same for both systems but 'AI' has an effective mass of $2 m$ and $11 B_{1}$ has an effective mass of $32 m \rightarrow V_{132}>V_{12}$
3) The center of the disk shown below is known to have a downward acceleration. Assume the cable does not slip on the nomagencous disk. Circle the answer below that most accurately describes the tension in section o $A B$ and $c \infty$ of the cable.

redize that disk is going to either accelerate up or down based on rolling without slip on cable CD

$$
\begin{aligned}
& \uparrow \sum M_{0}: F R-T C D R=I_{6} \alpha<0 \\
& F R-\operatorname{TcoR}<0 \\
& F-\operatorname{TCD}<0 \rightarrow F<T_{C D} \text { or } T_{A B}<T_{C D}
\end{aligned}
$$

4) You are on a cart that is initially at rest's an a smooth track. You throw a ball at a partition that is rigidly mounted on the cart. It the ball bounces off the partition as shown in the figure, then at the instant shown in the figure

$$
\begin{aligned}
& M=\text { mass of ball } \\
& M=\text { mass of man + curt }
\end{aligned}
$$

©

FBD initially

FBD o impact
momentum is conserved For system in " x "
$\xrightarrow{\rightarrow}$

$$
\begin{aligned}
& \text { cart, ix }=\frac{- \text { AA Veallizx }}{m}
\end{aligned}
$$

