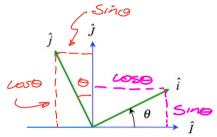

Consider two sets of coordinate axes, having $\hat{i}\hat{j}\hat{k}$ – unit vectors and $\hat{l}\hat{j}\hat{k}$ – unit vectors, as shown in the figure. The angular velocity of the coordinate system for the $\hat{i}\hat{j}\hat{k}$ – unit vectors is known to be:

$$\vec{\omega} = \dot{\theta}\hat{k} + \Omega\hat{l}$$

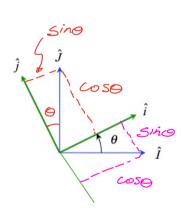

All answers below should be in terms of, at most: θ , $\dot{\theta}$, Ω and the unit vectors defined above.

Problem 1

Write down the $\hat{i}\hat{j}$ -unit vectors in terms of the $\hat{I}\hat{J}$ -unit vectors:

$$\hat{i} = 1050$$
 $\hat{j} + 500$ \hat{j}

$$\hat{j} = -\sin\Theta \hat{I} + \cos\Theta \hat{J}$$



Problem 2

Write down the $\hat{l}\hat{j}$ unit vectors in terms of the $\hat{i}\hat{j}$ unit vectors:

$$\hat{I} = \underline{\hspace{0.5cm}} \cos \Theta \hat{i} + \underline{\hspace{0.5cm}} (-sm\Theta) \hat{j}$$

$$\hat{J} = Sin\theta \hat{i} + Cos\theta \hat{j}$$

Problem 3

Write down the \vec{a} vector in terms of the $\hat{i}\hat{j}\hat{k}$ – unit vectors : $\vec{\omega} = \hat{\boldsymbol{\sigma}}\hat{k} + \underline{\hat{c}}$ ($\hat{\boldsymbol{\omega}}$ – $\hat{\boldsymbol{\omega}}$ – $\hat{\boldsymbol{\omega}}$ – $\hat{\boldsymbol{\omega}}$

$$\hat{\omega} = \mathcal{L} \omega S \Theta \qquad \hat{i} + (-\mathcal{L} S m \Theta) \qquad \hat{j} + \dot{\Theta} \qquad \hat{k}$$

Problem 4 - BONUS question

If Ω and $\dot{\theta}$ are constant, write down the angular acceleration vector $\vec{\alpha}$ vector in terms of the $\hat{i}\hat{j}\hat{k}$ —unit vectors :

$$\vec{\alpha} = \frac{(\dot{\Theta}_{-} \times \dot{S} \dot{n} \Theta)}{\hat{i} + (-\dot{\Theta}_{-} \times \dot{C} \otimes \Theta)} \hat{j} + 0 \qquad \hat{k}$$

$$\vec{\alpha} = \frac{\dot{\beta} \hat{1} + \dot{\beta} \hat{1} + \dot{\beta} \hat{k} + \dot{\phi} \hat{k} = \dot{\phi}(\vec{\omega} \times \hat{k})}{\hat{i} + \dot{\beta} \hat{k} + \dot{\phi} \hat{k} = \dot{\phi}(\vec{\omega} \times \hat{k})}$$

$$= \dot{\phi} \left[-\dot{\Omega} \cos \theta \hat{\lambda} - \dot{\Omega} \sin \theta \hat{j} + \dot{\phi} \hat{k} \right] \times \hat{k}$$

$$= \dot{\phi} \cdot \Omega \left(-\sin \theta \hat{\lambda} - \cos \theta \hat{j} \right)$$