Block A of mass $m=10 \mathrm{~kg}$ is traveling to the right at $u_{n}=2 \mathrm{ft} / \mathrm{s}$ at the instant shown. If the coefficient of kinetic friction is uk $=0,2$ between the surface and A_{1} determine the accelenationof A and B. Block. B has a muss of 2 m .

Step (2) Kinetic Equations
Block A

$$
\begin{aligned}
& +\Sigma F_{x}: T-\mu x N_{A}=m a A \\
& +\uparrow \Sigma F_{q}:-m A g+N_{A}=0
\end{aligned}
$$

Block B

$$
\begin{aligned}
& +\downarrow \Sigma F_{q}:-2 T+2 m q=2 m a_{B} \\
& N_{A}=\text { MACh } \\
& \left.\begin{array}{r}
T-\mu x m G=m d t \\
-2 T+2 m g=2 m a s
\end{array}\right\} \begin{array}{l}
2 \text { ennis } \\
3 \text { unknot }
\end{array} \\
& 3 \text { unknowns } \\
& a_{A}, a_{B,} T
\end{aligned}
$$

Step (3) kinematics

$$
\begin{aligned}
& L=S A+2 S B=0 \\
& \frac{d L}{d t}=S_{A}+2 \dot{S}_{B}=0 \\
& \frac{d^{2}}{d t^{2}}=S_{A}+2 \dot{S}_{B}=0
\end{aligned}
$$

$\ddot{s} A=-2 \ddot{S}_{B}$ in cable coordinate systems, This a source of confusion. We need to convert from local to global

$$
\begin{aligned}
& a_{A}=-\ddot{S}_{A} \\
& a_{B}=+\ddot{S}_{B}
\end{aligned} \quad \longrightarrow \quad \ddot{a}_{A}=+2 a_{B}
$$

Think of it this way
$\begin{aligned} & a_{A} \in a_{B}=2 a_{A} \quad x \\ & a_{A} \rightarrow\end{aligned} \quad a_{B}=2 a_{A} \downarrow$. What we need
Now we defined in our summation of forces at is positive to right and at is positive downward and equal to Rat

$$
\begin{aligned}
& T-\operatorname{uxm}_{\mathrm{c}}=m q_{t} 2 a_{b} \sim \text { I assumed }^{a_{k} \rightarrow} \\
& \text { and } a_{B} \dot{d} \\
& -21+2 m g=2 m a s \\
& T \text {-MkMG }=2 m a_{B} \\
& -2 T+2 m \mathrm{my}=2 \mathrm{mat} \\
& \text { I just need } \\
& \text { the relationship } \\
& \text { and to know } \\
& \text { what the cube } \\
& \text { equation moans }
\end{aligned}
$$

solving

$$
\begin{aligned}
& T=\frac{m q(\mu+2)}{3}=\frac{10 \cdot 9,81(0,2+2)}{3}=71,94+7 \\
& A_{B}=\frac{q(1-\mu)}{3}=\frac{9,81(1-0,2)}{3}=2,62 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

