ecture

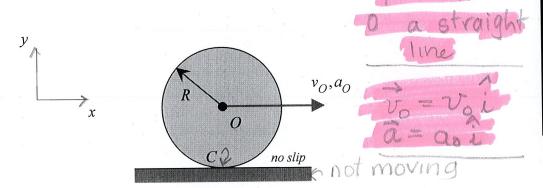
Rolling Without Slipping

Consider the wheel shown below that rolls along a rough, stationary horizontal surface with the center of the wheel O having a velocity and acceleration of v_O and a_O , respectively. As the wheel moves, it is assumed that sufficient friction acts between the wheel and the fixed horizontal surface that the contact point C does not slip. The consequences of the "no slip" condition at C are:

$$v_{cx} = 0$$

$$a_{cx} = 0$$

(If either of the above is not true, then point C "slips" as the wheel moves.)



We will encounter many problems throughout the course that involve the rolling without slipping of a body on a stationary surface. Although this concept is defined through a simple set of equations, the consequences of rolling without slipping on the velocity and acceleration of other points on the body can become quite complicated. We will see this through a number of examples.

CHALLENGE QUESTION: If C is a no-slip point, what are the y-components for the velocity and acceleration of C?

ANSWER: Since O moves on a straight, horizontal path, the y-components of the velocity and acceleration of O are zero. From this and the no-slip condition above for C, we can write:

$$\vec{v}_C = \vec{v}_O + \vec{\omega} \times \vec{r}_{C/O}$$

$$v_{Cy}\hat{j} = v_O\hat{i} + (\omega\hat{k}) \times (-R\hat{j}) = (v_O + R\omega)\hat{i} \quad \Rightarrow \quad v_{Cy} = 0$$
and
$$\vec{a}_C = \vec{a}_O + \vec{\alpha} \times \vec{r}_{C/O} - \omega^2 \vec{r}_{C/O}$$

$$\vec{a}_C = \vec{a}_O + \vec{\alpha} \times \vec{r}_{C/O} - \omega^2 \vec{r}_{C/O}$$

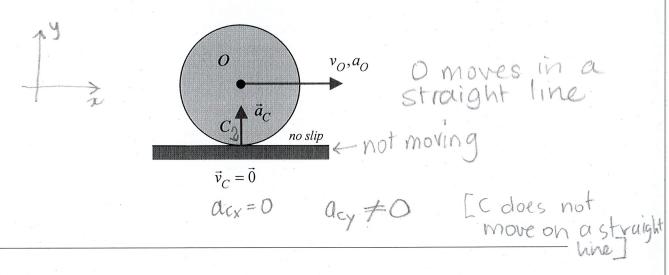
$$\vec{a}_C = \vec{a}_O + (\alpha\hat{k}) \times (-R\hat{j}) - \omega^2 (-R\hat{j})$$

 $a_{Cy}\hat{j} = a_O\hat{i} + (\alpha\hat{k}) \times (-R\hat{j}) - \omega^2(-R\hat{j})$ $= (a_O + R\alpha)\hat{i} + R\omega^2\hat{j} \quad \Rightarrow \quad a_{Cy} = R\omega^2$

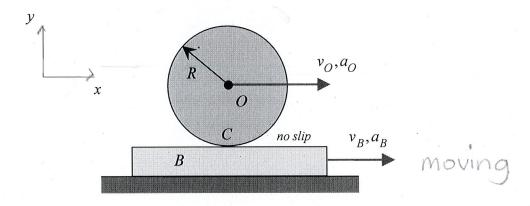
From this we see that: $\vec{v}_c = \vec{0}$ and $\vec{a}_C = R\omega^2 \hat{j} \neq \vec{0}$.

Also ant Rd = 0 [No i component on L.H.S. an - RA

This says that the velocity for a no-slip point is zero; however, the acceleration of that point is NOT zero. it has a non-zero y component.



Consider another situation where here the wheel rolls without slipping on a second body B that is itself translating in the x-direction.



No slip for this situation is described by the following:

$$egin{array}{lll} v_{cx} = v_B & & & \mathcal{V}_{\text{CY}} = O \ a_{cx} = a_B & & & \mathcal{A}_{\text{CY}}
eq O \end{array}$$

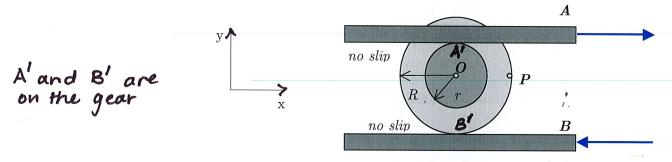
Following the same type of analysis shown above, we can show that the no-slip conditions produces: $v_{Cy} = 0$ and $a_{Cy} \neq 0$.

Example 2.A.4

Given: Rack A moves to the right with a speed of v_A and an acceleration of a_A . Rack B moves to the left with a constant speed of v_B . Assume $v_A = 0.8$ m/s, $a_A = 2$ m/s², $v_B = 0.6$ m/s, r = 0.1 m and R = 0.16 m.

Find: Determine:

- (a) The velocity of point P on the outer rim of the gear; and
- (b) The acceleration of point P on the outer rim of the gear.



 $\overline{\omega} = \omega \hat{k}, \ \vec{\alpha} = \alpha \hat{k}$ Expect ω to be negative, also α .

- Relate velocity at A' to velocity at B' to determine w.
- Relate acceleration at A' to acceleration at B', and then use i components to determine a
- · $\vec{v}_{p} = \vec{v}_{B'} + \vec{\omega} \times \vec{r}_{P|B'} = -\vec{v}_{Bi} + \vec{\omega} \hat{k} \times (\hat{R}_{i} + \hat{R}_{j})$
 - Relate \overline{a}_0 to $\overline{a}_{B'}$, use i components to find $\overline{a}_0 = a_0 i$ 0 moves in a straight line
 - Relate \vec{a}_p to \vec{a}_o to find \vec{a}_p $\vec{a}_p = \vec{a}_o + \vec{a}_x \vec{r}_{Plo} \vec{w}^2 \vec{r}_{Plo}$

First find ω and ω (A' from B') $\overline{v_{A'}} = \overline{v_{B'}} + \overline{\omega} \times (R+r)\hat{j}$ $\overline{v_{A'}} = -v_{B}\hat{i} + \omega \hat{k} \times (R+r)\hat{j}$ $\overline{v_{A}} = -v_{B} - (R+r)\omega$ $\omega = -(v_{A} + v_{B}) \text{ rad/s}$ (R+r)

$$\vec{a}_{A}' = \vec{a}_{B}' + \vec{Z}_{X} \vec{r}_{A'/B'} - \omega^{2} \vec{r}_{A'/B'}$$

$$\vec{a}_{A}\hat{i} + \vec{a}_{B'}\hat{j} = +\vec{a}_{B}\hat{i} + \vec{a}_{B'}\hat{j} + \vec{\lambda}_{KX}(R+r)\hat{j} - \omega^{2}(R+r)\hat{j}$$

$$\vec{a}_{A} = \vec{A}_{B} - (R+r) \times \omega$$

$$\vec{a}_{A} = \vec{a}_{B} - (R+r) \times \omega$$

$$\vec{a}_{B} = \vec{a}_{B} - (R+r) \times \omega$$

 $d = \frac{aA}{(R+r)} rad/s^{2}$ (clockwise if an is positive

Let's find up and ap

$$\vec{\nabla}p = \vec{\nabla}g_{1} + \vec{\omega} \times \vec{\rho}_{1}B_{1} =$$

$$\vec{\nabla}p = -\vec{\nabla}g_{1} + \vec{\omega}\hat{k} \times (R\hat{i} + R\hat{i})$$

$$\vec{\nabla}p = -(\vec{\nabla}g_{1} + R\hat{\omega})\hat{i} + R\hat{\omega}\hat{j} = ..., m/s$$

$$\vec{\alpha}_{0} = \vec{\alpha}_{B_{1}} + \vec{\alpha} \times \vec{\rho}_{0}B_{1} - \omega^{2}\hat{\rho}_{0}B_{1}$$

$$\vec{\alpha}_{0} = \vec{\alpha}_{B_{1}} + \vec{\alpha} \times \vec{\rho}_{0}B_{1} - \omega^{2}\hat{\rho}_{0}B_{1}$$

$$\vec{\alpha}_{0} = \vec{\alpha}_{B_{1}} + \vec{\alpha}_{B_{1}}\hat{i} + \vec{\alpha}_{B_{2}}\hat{i} + \vec{\alpha}_{A_{1}}\hat{k} \times (R\hat{i}) - \omega^{2}R\hat{i}$$

$$\vec{\alpha}_{0} = -\vec{\alpha}R\hat{i} + \vec{\alpha}_{B_{2}}\hat{i} + \vec{\alpha}_{B_{2}}\hat{i} + \vec{\alpha}_{B_{2}}\hat{i} + \vec{\alpha}_{B_{2}}\hat{i} + \vec{\alpha}_{B_{2}}\hat{i} + \vec{\alpha}_{B_{2}}\hat{i}$$

$$\vec{\alpha}_{0} = -\vec{\alpha}R\hat{i} + \vec{\alpha}_{B_{2}}\hat{i} + \vec{\alpha}$$

$$\frac{\vec{a}_0 = -\alpha R \hat{i} \quad m/s^2}{\hat{a}_p = \hat{a}_0 + \hat{a}_x r_{p/0} - \omega^2 r_{p/0}}$$

$$= -\alpha R \hat{i} + \alpha \hat{k}_x R \hat{i} - \omega^2 (R \hat{i})$$

$$\overline{\alpha}_{P} = (-\chi R - \omega^{2} R)\hat{i} + \chi R\hat{j}$$

$$\overline{\alpha}_{P} = -(\chi \hat{R} + \omega^{2} \hat{R})\hat{i} + \chi R\hat{j} \qquad m/s^{2}$$

Example 2.A.2

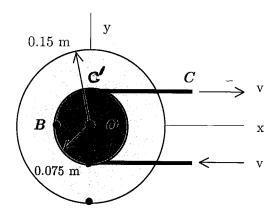
Given: The belt-driven pulley and attached disk are rotating about a shaft passing through O. At a certain instant, the speed v of the belt is known to be 1.5 m/s and the MAGNITUDE of the acceleration of point A on the disk is 75 m/s². Assume that the belt does not slip on the disk.

Find: For this instant:

- (a) Determine the angular acceleration of the pulley and disk;
- (b) Determine the acceleration vector of point B on the disk; and
- (c) Determine the acceleration of point C on the belt.

NB. We need more information to determine sign of α

O is a fixed point, : \$\vec{v}_0=\vec{0}\$ and do = 0



Strategy

Use $\vec{\alpha}_{c'} = \vec{\alpha}_0 + \vec{\alpha} \times \vec{r}_{c'10} - \omega^2 \vec{r}_{c'10}$ to show that you need to find as before you can some for a.

(2) Use $\vec{v}_{c'} = \vec{v}_0 + \vec{\omega} \times \vec{r}_{c'|0}$ and then solve for $|\alpha|$.

(3)
$$\overline{a}_B = \overline{a}_0 + \overline{a} \times \overline{p}_{10} - \omega^2 r_{p_{10}}$$
assume ale, a positive

(4)
$$\vec{a}_{z} = a_{cz}\hat{i}$$

 $\vec{a}_{c'} = \vec{a}_{0} + \vec{\lambda} \times \vec{r}_{c'/0}^{2} - \omega^{2}\vec{r}_{c'/0}^{2}$

Problem 2A2

what we know: clockwise rotation. $\nabla c' = \nabla i$ $\nabla p = -\nabla i$

To = 0 fixed point

At this instant v=1.5m/s $|\vec{a}_A| = 75 \text{ m/s}^2$

(a) Find &

an = ao + 2x FAID - 63 FAID Qui + anj = 3 + xkx (-0.15j) - 62 (-0.15j)

= 0.15xî + 0.15w2 j TOAX + OAP = 75 = V(01158)2 + (0.1562)2

Find $\omega \rightarrow U_{c}$ = $\frac{1}{200}$ + $\frac{1}{200}$ = $\frac{1}{200}$

1500 1500

clockwise

 $|\alpha| = |75^{2} - \{0.15(-20)\}^{2}$ $(0.15)^{2}$

we do not know the sign of a (Need more info.

(b) $\vec{\alpha}_B = \vec{\alpha}_0 + (\vec{\alpha}_B) \times \vec{r}_{Bio} - \vec{\omega}^2 \vec{r}_{Bio}$

$$\vec{a}_{B} = \alpha \hat{k} \times (-0.075\hat{i}) - \omega^{2}(-0.075\hat{i})$$

$$a_{B} = -0.075 \text{ d} \hat{j} + 0.075 \text{ b}^{2} \hat{i} \text{ m/s}^{2}$$

(c) On the belt acceleration is to the right and is equal to a component of acceleration of point Don the disk

$$\bar{a}_{c} = a_{c} \hat{i} = -0.075 \times \hat{i} \quad m/s^{2}$$