at test

Path Kinematics

path geometry is known: Y= F'(S)

S = S(+)

Recall that for the path description, the position of particle P is given by a distance 3 measured along the path of P. The velocity of point P is given by the first time derivative of the position vector for P:

arc length

$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{d\vec{r}}{ds}\frac{ds}{dt} = v\frac{d\vec{r}}{ds}$$

where the chain rule of differentiation has been used to introduce the path distance s into the kinematics and where v = ds/dt is the "speed" of the parti $\vec{r} + \Delta \vec{r}$

Scalor By definition, the derivative $\frac{d\vec{r}}{ds}$ is:

$$ds$$
 is.

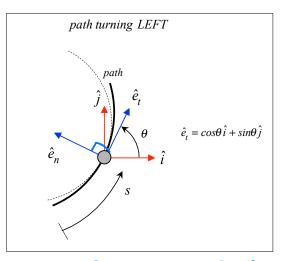
$$\frac{d\vec{r}}{ds} = \lim_{\Delta s \to 0} \frac{\Delta \vec{r}}{\Delta s}$$

where $\Delta \vec{r}$ is the change in the position vector \vec{r} as the particle moves a distance s along its path (as shown in the figure where P has moved to P').

Two observations on the above derivative, $\frac{d\vec{r}}{dc}$:

- As $\Delta s \to 0$, the chord length $|\Delta \vec{r}|$ tends to the length of the arc length Δs (see above figure): $|\Delta \vec{r}| \rightarrow \Delta s$. Therefore, $d\vec{r}/ds$ is a "unit vector" (magnitude of "1").
- As $\Delta s \to 0$, the vector $\Delta \vec{r}$ becomes tangent to the path of P (see above figure). direction of velocity

From this we conclude that $d\vec{r}/ds = \hat{e}_t = \text{unit}$ vector that is tangent to the path of P. Therefore,



 $\vec{v} = v\hat{e}_t$

Basis vector: Carresian: i, i

not functions of t

path: êt, ên

Differentiation of the above with respect to time gives:

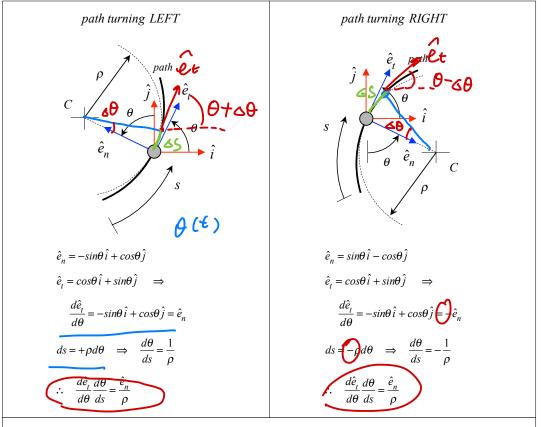
$$\vec{a} = \frac{d\vec{v}}{dt}$$

$$= \frac{d}{dt} (v\hat{e}_t)$$

$$= \frac{dv}{dt} \hat{e}_t + v \frac{d\hat{e}_t}{dt} \qquad \text{(product rule of differentiation)}$$

$$= (\hat{v}\hat{e}_t + v \frac{d\hat{e}_t}{ds}) (\text{chain rule of differentiation}) \qquad \frac{d\hat{e}_t}{ds} = (\hat{e}_t + v^2 \frac{d\hat{e}_t}{d\theta} \frac{d\theta}{ds}) (\text{chain rule of differentiation})$$

$$= \hat{v}\hat{e}_t + v^2 \frac{d\hat{e}_t}{d\theta} \frac{d\theta}{ds} \qquad \text{(chain rule of differentiation and } v = \frac{ds}{dt})$$



C = "center of curvature" (center of circle tangent to path having the same curvature as the path) $\rho = "radius of curvature" of path$

$$\frac{d\hat{e}_{b}}{ds} = \frac{\hat{e}_{r}}{p}$$

Consider the figures provided above showing the directions of the unit vectors \hat{e}_t and \hat{e}_t for left-turning and right-turning paths. From these figures, we see that for both cases:

$$\frac{d\hat{e}_t}{d\theta}\frac{d\theta}{ds} = \frac{1}{\rho}\hat{e}_n$$

where ρ is the radius of curvature of the path. Using this relationship in the above gives:

$$\vec{a} = \dot{v}\hat{e}_t + \frac{v^2}{\rho}\hat{e}_n$$

which describes the acceleration of a particle in terms of its path components.

What does it soeam?

Discussion - Path Description

We have seen that the velocity and acceleration of a particle can be written in terms of its path components by the following equations:

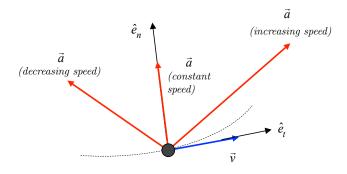
$$\vec{v} = v\hat{e}_t$$

$$\vec{a} = \dot{v}\hat{e}_t + \frac{v^2}{\rho}\hat{e}_n$$

- The velocity of a point is ALWAYS tangent to the path of the point. The magnitude of the velocity vector is the known as the scalar "speed" v of the point.
- The acceleration of the point has two components:

- The component $(v^2/\rho) \hat{e}_n$ is <u>normal</u> to the path. This is commonly referred to as the "centripetal" component of acceleration. This component is ALWAYS directed inward to the path (positive n-component) since $v^2/\rho > 0$.

- The component $\dot{v}\hat{e}_t$ is tangent to the path. The magnitude of this component is the "rate of change of speed" \dot{v} for the point.
 - * When $\dot{v} > 0$ (increasing speed), the acceleration vector has a positive t-component (i.e., forward of \hat{e}_n).
 - * When $\dot{v} = 0$ (constant speed), the acceleration vector has a zero t-component (i.e., \vec{a} is aligned with \hat{e}_n). Note that constant speed does NOT imply zero acceleration!
 - * When $\dot{v} < 0$ (decreasing speed), the acceleration vector has a negative t-component (i.e., backward of \hat{e}_n). See figure below.



• ρ is the radius of curvature for the path of the particle. If the path is known to be circular, ρ is the radius of the circle. For a general path known in terms of its Cartesian coordinates y = y(x), the radius of curvature can be calculated from:

$$\rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}{\left|\frac{d^2y}{dx^2}\right|}$$
 Sharper than \longrightarrow

turn at >> Constant speed

• The magnitude of the acceleration is given by the square root of the sum of the squares of its path components:

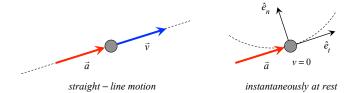
$$|\vec{a}| = \sqrt{\dot{v}^2 + (v^2/\rho)^2}$$

Do not confuse the terms "rate of change of speed" and "magnitude of acceleration":

- Rate of change of speed \dot{v} (as the name indicates) is the rate at which the speed changes in time; it is simply the tangential component of acceleration.
- The magnitude of acceleration $|\vec{a}|$ accounts for both the tangential and normal components of acceleration, as shown in the above equation.

CHALLENGE QUESTION: The acceleration vector is the time derivative of the velocity vector: $\vec{a} = d\vec{v}/dt$. In contrast, the scalar rate of change of speed is the time derivative of the scalar speed: $\dot{v} = dv/dt$. As discussed above, the magnitude of acceleration is generally not the same as the magnitude of the rate of change of speed: $|\vec{a}| \neq |\dot{v}|$. Are there situations in which they are the same?

ANSWER: Since $|\vec{a}| = \sqrt{\dot{v}^2 + (v^2/\rho)^2}$, $|\vec{a}| = |\dot{v}|$ ONLY IF $v^2/\rho = 0$. This occurs when either: (i) $\rho = \infty$ (straight-line, or rectilinear, motion), or (ii) v = 0 (particle instantaneously at rest). These two situations are shown in the following figure.



Example 1.A.3

Given: A jet is flying on the path shown below with a speed of v. At position A on the loop, the speed of the jet is v = 600 km/hr, the magnitude of the acceleration is 2.5g and the tangential component of acceleration is $a_t = 5 \text{ m/s}^2$.

Find: The radius of curvature of the path of the jet at A.

$$\vec{a} = \vec{v} \cdot \hat{e}_{t} + \frac{\vec{v}^{2}}{e} \cdot \hat{e}_{n}$$

$$\vec{a}_{t} = 5\pi/s^{2} \cdot \vec{a}_{n}$$

$$|\vec{a}_{t}|^{2} = \vec{v}^{2} + \left(\frac{\vec{v}^{2}}{e}\right)^{2}$$

$$\Rightarrow \vec{v} = \sqrt{|\vec{a}|^{2} - \vec{v}^{2}}$$

$$\Rightarrow \vec{v} = \sqrt{|\vec{a}|^{2} - \vec{v}^{2}}$$

$$\Rightarrow \vec{v} = \sqrt{|\vec{a}|^{2} - \vec{v}^{2}}$$

$$\Rightarrow \vec{v} = 5\pi/s^{2},$$

$$|\vec{a}| = 2.5g$$