Question C3.1

Particle P moves on the top horizontal surface of a disk that is rotating in a clockwise sense about a vertical axis with a rate of $\Omega=5 \mathrm{rad} / \mathrm{s}$. The position of P is described in terms of a set of Cartesian components x_{P} and y_{P} measured relative to the disk. When $\left(x_{P}, y_{P}\right)=(4,3) \mathrm{ft}$, the velocity of P as seen by a stationary observer is: $\vec{v}_{P}=(10 \hat{i}-20 \hat{j}) \mathrm{ft} / \mathrm{s}$. Describe the velocity of P as seen by an observer on the disk.

Question C3.2
A disk is pinned to ground at its center O with the disk rotating clockwise at a constant rate of $\Omega=3 \mathrm{rad} / \mathrm{s}$. Block P is traveling to the left along a straight path toward O with a constant speed of $v_{P}=20 \mathrm{ft} / \mathrm{s}$. Determine the acceleration of P as seen by an observer on the disk when P is at a distance of 50 ft from O .

Suppose observer is on disk at point 0 .
with $\vec{\omega}=-\Omega \hat{k}$

$$
\begin{aligned}
& \left(\overrightarrow{U p l o ~ r e ~}^{\omega}=\vec{U}_{p}-\vec{V}_{0}^{0}-\vec{\omega} \times \vec{r}_{p / 0}^{0}\right. \\
& \vec{r}_{P / D}=d \hat{b}
\end{aligned}
$$

[Same final answer it observer is at A or B or any point on the rotating disk.]

Question C3.3

Sprinkler arm OA is pinned to a cart at point O. The cart moves to the right with a speed of $v_{\text {cart }}$ with $\dot{v}_{\text {cart }}=2 \mathrm{ft} / \mathrm{s}^{2}=$ constant. Fluid flows through the sprinkler arm at a rate of \dot{d} with $\ddot{d}=-3$ $\mathrm{ft} / \mathrm{s}^{2}=$ constant. The sprinkler arm is being raised at a constant rate of $\dot{\theta}=4 \mathrm{rad} / \mathrm{s}$. An observer and $x y z$ coordinate system are attached to the sprinkler arm, as shown in the figure below. The following equation is to be used to find the acceleration of a pellet P that flows with the fluid in the arm:

$$
\vec{a}_{P}=\vec{a}_{O}+\left(\vec{a}_{P / O}\right)_{r e l}+\vec{\alpha} \times \vec{r}_{P / O}+2 \vec{\omega} \times\left(\vec{v}_{P / O}\right)_{r e l}+\vec{\omega} \times\left[\vec{\omega} \times \vec{r}_{P / O}\right]
$$

Provide numerical values for the following terms when: $d=3 \mathrm{ft}, v_{\text {cart }}=3 \mathrm{ft} / \mathrm{s}, \dot{d}=5 \mathrm{ft} / \mathrm{s}$ and $\theta=90^{\circ}$.

$$
\begin{aligned}
& \vec{a}_{O}=\dot{V}_{\text {cast }} \\
& \vec{\omega}=\dot{\hat{\imath}} \\
& \vec{\alpha}=\overrightarrow{0} \\
& \left(\vec{v}_{P / O}\right)_{r e l}=\dot{\alpha} \hat{\jmath} \\
& \left(\vec{a}_{P / O}\right)_{r e l}=\ddot{d} \hat{\jmath}
\end{aligned}
$$

Question C3.4

The vertical shaft $O A$ rotates about a fixed axis with a constant rate of $\Omega=8 \mathrm{rad} / \mathrm{s}$. The arm AB is pinned to OA and is being raised at a constant rate of $\dot{\theta}=10 \mathrm{rad} / \mathrm{s}$. An observer and $x y z$ axes are attached to AB . The $X Y Z$ axes are stationary. What is the angular acceleration vector for arm AB when $\theta=90^{\circ}$?

$$
\begin{aligned}
& \vec{\omega}=-\Omega \hat{\sigma}+\dot{\theta} \hat{k} \\
& \left.\vec{\alpha}=-\hat{t}_{0}^{2} \hat{\sigma}-\Omega \hat{i} \hat{i}+\dot{\theta}_{0} \hat{k}+\dot{\theta} \hat{\hat{b}}\right)=\vec{\omega} \times \hat{k}
\end{aligned}
$$

Question C3.5
Arm AB rotates about a fixed vertical axis with a constant rate of ω_{1}. A ring, with its center at O and of radius r, rotates about arm AB with a constant rate of ω_{2}. A particle P moves along the ring with $\dot{\theta}=$ constant. Let the $X Y Z$ axes be fixed, and the $x y z$ axes be attached to the ring. At the position shown, $\theta=90^{\circ}$ and the $x y z$ axes are aligned with the $X Y Z$ axes. It is desired to use the following equation to determine the acceleration of P for the position shown:

$$
\vec{a}_{P}=\vec{a}_{O}+\left(\vec{a}_{P / O}\right)_{r e l}+\vec{\alpha} \times \vec{r}_{P / O}+2 \vec{\omega} \times\left(\vec{v}_{P / O}\right)_{r e l}+\vec{\omega} \times\left[\vec{\omega} \times \vec{r}_{P / O}\right]
$$

Provide expressions for the following terms appearing in this equation.

Question C3.6

Consider an observer who is riding along on a moving (translating and rotating) rigid body. We wish to use the observation of this person in describing the motion of some point B, which is not fixed to the body, in the following moving reference frame acceleration equation.

$$
\begin{aligned}
\vec{a}_{B} & =\vec{a}_{A}+\left(\vec{a}_{B / A}\right)_{r e l}+\vec{\alpha} \times \vec{r}_{B / A}+2 \vec{\omega} \times\left(\vec{v}_{B / A}\right)_{r e l}+\vec{\omega} \times\left[\vec{\omega} \times \vec{r}_{B / A}\right] \\
& =\vec{a}_{A}+\vec{a}_{B / A}
\end{aligned}
$$

Answer the following questions in words:

- What is the meaning of $\vec{\omega}$? Ing. vel of body
- What is the meaning of $\vec{\alpha}$? ang-acc of body
- What is the meaning of $\left(\vec{v}_{B / A}\right)_{\text {rel }}$? vel. of B as seen by obscener

- What restrictions, if any, are on the choice of point A? Must be on same
n̈gid body as obsenver
- What is the difference in meaning between $\vec{a}_{B / A}$ and $\left(\vec{a}_{B / A}\right)_{\text {rel }}$?

$$
\vec{a}_{B / A}=\vec{a}_{B}-\vec{a}_{A} \neq\left(\vec{a}_{B / A N}=a c c \text { of } B \text { as } \operatorname{sen}\right. \text { by }
$$

