
Homework 6.L

Given: Block A (having a mass of m) is attached to cart B with two springs of stiffnesses 3k and k, as shown below. A third spring of stiffness 2k is attached between A and ground. Cart B is given a prescribed displacement of $x_B(t) = b \cos \omega t$. The absolute motion of block A is described by the coordinate x. All springs are unstretched when $x = x_B = 0$ m. Consider all of the surfaces to be smooth.

Find: For this problem:

- (a) Derive the differential equation of motion for block A in terms of the coordinate x;
- (b) Determine the numerical value for the natural frequency of this system; and
- (c) Derive the particular solution of the system $x_p(t)$.

Use the following parameters in your analysis: m=12 kg, k=800 N/m, b=0.1 m, and $\omega=25$ rad/s.

6-14 ©Freeform