
Homework H1.D

Given: Particle P moves along a path with its position on the path given by the arc length of s. The speed of P is given as a function of s as: $v_P = bs^2$, where s is given in meters and v_P in terms of meters/second. The radius of curvature of the path is given by ρ and the path tangent is at an angle of θ with respect to the direction of the x-axis.

Find: At the position of P where s = 3 m:

- (a) Make a sketch of the path unit vectors \hat{e}_t and \hat{e}_n .
- (b) Determine the velocity and acceleration of P in terms of path unit vectors \hat{e}_t and \hat{e}_n .
- (c) Determine the velocity and acceleration of P in terms of Cartesian unit vectors \hat{i} and \hat{j} .
- (d) Determine the xy-components of location of the center of curvature, C, for the path.

Use the following parameters in your work: b = 0.5/m-s, $\rho = 5 \text{ m}$ and $\theta = 30^{\circ}$.

1-6 ©Freeform